以下是一个使用Python和常见深度学习库(如TensorFlow
和Keras
)实现简单医学图像分割的示例。这里以U-Net网络为例,用于医学图像分割。
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import os
import cv2# 构建U-Net模型
def build_unet(input_shape):inputs = layers.Input(input_shape)# 编码器部分c1 = layers.Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(inputs)c1 = layers.Dropout(0.1)(c1)c1 = layers.Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c1)p1 = layers.MaxPooling2D((2, 2))(c1)c2 = layers.Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1)c2 = layers.Dropout(0.1)(c2)c2 = layers.Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c2)p2 = layers.MaxPooling2D((2, 2))(c2)c3 = layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p2)c3 = layers.Dropout(0.2)(c3)c3 = layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c3)p3 = layers.MaxPooling2D((2, 2))(c3)c4 = layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p3)c4 = layers.Dropout(0.2)(c4)c4 = layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c4)p4 = layers.MaxPooling2D(pool_size=(2, 2))(c4)c5 = layers.Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p4)c5 = layers.Dropout(0.3)(c5)c5 = layers.Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c5)# 解码器部分u6 = layers.Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)u6 = layers.concatenate([u6, c4])c6 = layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u6)c6 = layers.Dropout(0.2)(c6)c6 = layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c6)u7 = layers.Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)u7 = layers.concatenate([u7, c3])c7 = layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u7)c7 = layers.Dropout(0.2)(c7)c7 = layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c7)u8 = layers.Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)u8 = layers.concatenate([u8, c2])c8 = layers.Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u8)c8 = layers.Dropout(0.1)(c8)c8 = layers.Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c8)u9 = layers.Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)u9 = layers.concatenate([u9, c1])c9 = layers.Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u9)c9 = layers.Dropout(0.1)(c9)c9 = layers.Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c9)outputs = layers.Conv2D(1, (1, 1), activation='sigmoid')(c9)model = models.Model(inputs=[inputs], outputs=[outputs])model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])return model# 加载和预处理数据
def load_data(data_dir, mask_dir, img_size):images = []masks = []for img_name in os.listdir(data_dir):img_path = os.path.join(data_dir, img_name)mask_path = os.path.join(mask_dir, img_name)img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)img = cv2.resize(img, img_size)img = img / 255.0img = np.expand_dims(img, axis=-1)images.append(img)mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)mask = cv2.resize(mask, img_size)mask = mask / 255.0mask = np.expand_dims(mask, axis=-1)masks.append(mask)images = np.array(images)masks = np.array(masks)return images, masks# 主函数
def main():# 数据路径data_dir = 'path/to/your/images'mask_dir = 'path/to/your/masks'img_size = (256, 256)# 加载数据images, masks = load_data(data_dir, mask_dir, img_size)# 构建模型model = build_unet(input_shape=(256, 256, 1))# 训练模型model.fit(images, masks, epochs=10, batch_size=16)# 保存模型model.save('medical_image_segmentation_model.h5')if __name__ == "__main__":main()
代码说明:
- U-Net模型构建:
build_unet
函数构建了一个U-Net网络,包含编码器和解码器部分。 - 数据加载和预处理:
load_data
函数用于加载医学图像和对应的分割掩码,并进行预处理,如调整大小和归一化。 - 主函数:
main
函数中,你需要将data_dir
和mask_dir
替换为实际的图像和掩码数据路径,然后加载数据、构建模型、训练模型并保存模型。
运行步骤:
- 确保你已经安装了
TensorFlow
、NumPy
和OpenCV
库。 - 将代码保存为
medical_image_segmentation.py
文件。 - 准备好医学图像和对应的分割掩码数据,并将其路径替换到代码中的
data_dir
和mask_dir
。 - 在VSCode中打开该文件,在终端中运行
python medical_image_segmentation.py
。