欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 汽车 > 时评 > 【高等数学学习记录】极限运算法则

【高等数学学习记录】极限运算法则

2024/10/24 19:38:39 来源:https://blog.csdn.net/qq_26390449/article/details/142769952  浏览:    关键词:【高等数学学习记录】极限运算法则

1 知识点


定理1:
有限个无穷小的和也是无穷小。

定理2:
有界函数与无穷小的乘积是无穷小。

推论1:
常数与无穷小的乘积是无穷小。

推论2:
有限个无穷小的乘积也是无穷小。

定理3:
如果 lim ⁡ f ( x ) = A \lim f(x)=A limf(x)=A, lim ⁡ g ( x ) = B \lim g(x)=B limg(x)=B, 那么
(1) lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) = A ± B \lim [f(x)\pm g(x)]=\lim f(x)\pm \lim g(x)=A\pm B lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
(2) lim ⁡ [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B \lim [f(x)\cdot g(x)]=\lim f(x)\cdot \lim g(x)=A\cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB
(3) 若又有 B ≠ 0 B\neq 0 B=0, 则 lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B \lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}=\frac{A}{B} limg(x)f(x)=limg(x)limf(x)=BA

推论1:
如果 lim ⁡ f ( x ) \lim f(x) limf(x) 存在,而 c c c 为常数,则 lim ⁡ [ c f ( x ) ] = c lim ⁡ f ( x ) \lim [cf(x)]=c\lim f(x) lim[cf(x)]=climf(x)

推论2:
如果 lim ⁡ f ( x ) \lim f(x) limf(x) 存在,而 n n n 是正整数,则 lim ⁡ [ f ( x ) ] n = [ lim ⁡ f ( x ) ] n \lim [f(x)]^n=[\lim f(x)]^n lim[f(x)]n=[limf(x)]n

定理4:
设有数列 { x n } \lbrace x_n\rbrace {xn} { y n } \lbrace y_n\rbrace {yn},如果 lim ⁡ n → ∞ x n = A \lim_{n\rightarrow \infty}x_n=A limnxn=A lim ⁡ x → ∞ y n = B \lim_{x\rightarrow \infty}y_n=B limxyn=B,那么
(1) lim ⁡ n → ∞ ( x n ± y n ) = A ± B \lim_{n\rightarrow \infty}(x_n\pm y_n)=A\pm B limn(xn±yn)=A±B;
(2) lim ⁡ n → ∞ x n ⋅ y n = A ⋅ B \lim_{n\rightarrow \infty}x_n\cdot y_n=A\cdot B limnxnyn=AB;
(3) 当 y n ≠ 0 ( n = 1 , 2 , … ) y_n\neq 0(n=1,2,\dots) yn=0(n=1,2,) B ≠ 0 B\neq 0 B=0 时, lim ⁡ n → ∞ x n y n = A B \lim_{n\rightarrow \infty}\frac{x_n}{y_n}=\frac{A}{B} limnynxn=BA

定理5:
如果 f ( x ) ≥ g ( x ) f(x)\geq g(x) f(x)g(x),而 lim ⁡ f ( x ) = a \lim f(x)=a limf(x)=a lim ⁡ g ( x ) = b \lim g(x)=b limg(x)=b,那么 a ≥ b a\geq b ab

定理6(复合函数的极限运算法则):
设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 是由函数 u = g ( x ) u=g(x) u=g(x) 与函数 y = f ( u ) y=f(u) y=f(u) 复合而成, f [ g ( x ) ] f[g(x)] f[g(x)] 在点 x 0 x_0 x0 的某去心邻域内有定义,若 lim ⁡ x → x 0 g ( x ) = u 0 \lim_{x\rightarrow x_0}g(x)=u_0 limxx0g(x)=u0 lim ⁡ u → u 0 f ( u ) = A \lim_{u\rightarrow u_0}f(u)=A limuu0f(u)=A,且存在 δ 0 > 0 \delta _0>0 δ0>0,当 x ∈ U ˚ ( x 0 , δ 0 ) x\in \mathring{U}(x_0,\delta_0) xU˚(x0,δ0) 时,有 g ( x ) ≠ u 0 g(x)\neq u_0 g(x)=u0,则 lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A \lim_{x\rightarrow x_0}f[g(x)]=\lim_{u\rightarrow u_0}f(u)=A limxx0f[g(x)]=limuu0f(u)=A


2 练习题


2.1 计算极限

  • (1) lim ⁡ x → 2 x 2 + 5 x − 3 \lim_{x\rightarrow 2}\frac{x^2+5}{x-3} limx2x3x2+5
    = lim ⁡ x → 2 ( x 2 + 5 ) lim ⁡ x → 2 ( x − 3 ) =\frac{\lim_{x\rightarrow 2}(x^2+5)}{\lim_{x\rightarrow 2}(x-3)} =limx2(x3)limx2(x2+5)
    = 9 − 1 =\frac{9}{-1} =19
    = − 9 =-9 =9

  • (2) lim ⁡ x → 3 x 2 − 3 x 2 + 1 \lim_{x\rightarrow \sqrt{3}}\frac{x^2-3}{x^2+1} limx3 x2+1x23
    = lim ⁡ x → 3 ( x 2 − 3 ) lim ⁡ x → 3 ( x 2 + 1 ) =\frac{\lim_{x\rightarrow \sqrt{3}}(x^2-3)}{\lim_{x\rightarrow \sqrt{3}}(x^2+1)} =limx3 (x2+1)limx3 (x23)
    = 0 4 = 0 =\frac{0}{4}=0 =40=0

  • (3) lim ⁡ x → 1 x 2 − 2 x + 1 x 2 − 1 \lim_{x\rightarrow 1}\frac{x^2-2x+1}{x^2-1} limx1x21x22x+1
    = lim ⁡ x → 1 ( x − 1 ) 2 ( x + 1 ) ( x − 1 ) =\lim_{x\rightarrow 1}\frac{(x-1)^2}{(x+1)(x-1)} =limx1(x+1)(x1)(x1)2
    = lim ⁡ x → 1 x − 1 x + 1 =\lim_{x\rightarrow 1}\frac{x-1}{x+1} =limx1x+1x1
    = lim ⁡ x → 1 ( x − 1 ) lim ⁡ x → 1 ( x + 1 ) =\frac{\lim_{x\rightarrow 1}(x-1)}{\lim_{x\rightarrow 1}(x+1)} =limx1(x+1)limx1(x1)
    = 0 2 = 0 =\frac{0}{2}=0 =20=0

  • (4) lim ⁡ x → 0 4 x 3 − 2 x 2 + x 3 x 2 + 2 x \lim_{x\rightarrow 0}\frac{4x^3-2x^2+x}{3x^2+2x} limx03x2+2x4x32x2+x
    = lim ⁡ x → 0 4 x 2 − 2 x + 1 3 x + 2 =\lim_{x\rightarrow 0}\frac{4x^2-2x+1}{3x+2} =limx03x+24x22x+1
    = lim ⁡ x → 0 ( 4 x 2 − 2 x + 1 ) lim ⁡ x → 0 ( 3 x + 2 ) =\frac{\lim_{x\rightarrow 0}(4x^2-2x+1)}{\lim_{x\rightarrow 0}(3x+2)} =limx0(3x+2)limx0(4x22x+1)
    = 1 2 =\frac{1}{2} =21

  • (5) lim ⁡ h → 0 ( x + h ) 2 − x 2 h \lim_{h\rightarrow 0}\frac{(x+h)^2-x^2}{h} limh0h(x+h)2x2
    = lim ⁡ h → 0 h 2 + 2 h x h =\lim_{h\rightarrow 0}\frac{h^2+2hx}{h} =limh0hh2+2hx
    = lim ⁡ h → 0 ( h + 2 x ) =\lim_{h\rightarrow 0}(h+2x) =limh0(h+2x)
    = 2 x =2x =2x

  • (6) lim ⁡ x → ∞ ( 2 − 1 x + 1 x 2 ) \lim_{x\rightarrow \infty}(2-\frac{1}{x}+\frac{1}{x^2}) limx(2x1+x21)
    = 2 − lim ⁡ x → ∞ 1 x + lim ⁡ x → ∞ 1 x 2 =2-\lim_{x\rightarrow \infty}\frac{1}{x}+\lim_{x\rightarrow \infty}\frac{1}{x^2} =2limxx1+limxx21
    = 2 − 0 + 0 = 2 =2-0+0=2 =20+0=2

  • (7) lim ⁡ x → ∞ x 2 − 1 2 x 2 − x − 1 \lim_{x\rightarrow \infty}\frac{x^2-1}{2x^2-x-1} limx2x2x1x21
    = lim ⁡ x → ∞ ( x + 1 ) ( x − 1 ) ( 2 x + 1 ) ( x − 1 ) =\lim_{x\rightarrow \infty}\frac{(x+1)(x-1)}{(2x+1)(x-1)} =limx(2x+1)(x1)(x+1)(x1)
    = lim ⁡ x → ∞ x + 1 2 x + 1 =\lim_{x\rightarrow \infty}\frac{x+1}{2x+1} =limx2x+1x+1
    = lim ⁡ x → ∞ ( 1 + 1 x ) lim ⁡ x → ∞ ( 2 + 1 x ) =\frac{\lim_{x\rightarrow \infty}(1+\frac{1}{x})}{\lim_{x\rightarrow \infty}(2+\frac{1}{x})} =limx(2+x1)limx(1+x1)
    = 1 2 =\frac{1}{2} =21

  • (8) lim ⁡ x → ∞ x 2 + x x 4 − 3 x 2 + 1 \lim_{x\rightarrow \infty}\frac{x^2+x}{x^4-3x^2+1} limxx43x2+1x2+x
    = lim ⁡ x → ∞ ( 1 x 2 + 1 x 3 ) lim ⁡ x → ∞ ( 1 − 3 x 2 + 1 x 4 ) =\frac{\lim_{x\rightarrow \infty}(\frac{1}{x^2}+\frac{1}{x^3})}{\lim_{x\rightarrow \infty}(1-\frac{3}{x^2}+\frac{1}{x^4})} =limx(1x23+x41)limx(x21+x31)
    = 0 =0 =0

  • (9) lim ⁡ x → 4 x 2 − 6 x + 8 x 2 − 5 x + 4 \lim_{x\rightarrow 4}\frac{x^2-6x+8}{x^2-5x+4} limx4x25x+4x26x+8
    = lim ⁡ x → 4 ( x − 4 ) ( x − 2 ) ( x − 4 ) ( x − 1 ) =\lim_{x\rightarrow 4}\frac{(x-4)(x-2)}{(x-4)(x-1)} =limx4(x4)(x1)(x4)(x2)
    = lim ⁡ x → 4 x − 2 x − 1 =\lim_{x\rightarrow 4}\frac{x-2}{x-1} =limx4x1x2
    = lim ⁡ x → 4 ( x − 2 ) lim ⁡ x → 4 ( x − 1 ) =\frac{\lim_{x\rightarrow 4}(x-2)}{\lim_{x\rightarrow 4}(x-1)} =limx4(x1)limx4(x2)
    = 2 3 =\frac{2}{3} =32

  • (10) lim ⁡ x → ∞ ( 1 + 1 x ) ( 2 − 1 x 2 ) \lim_{x\rightarrow \infty}(1+\frac{1}{x})(2-\frac{1}{x^2}) limx(1+x1)(2x21)
    = lim ⁡ x → ∞ ( 1 + 1 x ) ⋅ lim ⁡ x → ∞ ( 2 − 1 x 2 ) =\lim_{x\rightarrow \infty}(1+\frac{1}{x})\cdot \lim_{x\rightarrow \infty}(2-\frac{1}{x^2}) =limx(1+x1)limx(2x21)
    = 1 ⋅ 2 = 2 =1\cdot 2= 2 =12=2

  • (11) lim ⁡ n → ∞ ( 1 + 1 2 + 1 4 + ⋯ + 1 2 n ) \lim_{n\rightarrow \infty}(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}) limn(1+21+41++2n1)
    = lim ⁡ n → ∞ 1 − 1 2 n + 1 1 − 1 2 =\lim_{n\rightarrow \infty}\frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}} =limn12112n+11
    = lim ⁡ x → ∞ ( 2 − 1 2 n ) =\lim_{x\rightarrow \infty}(2-\frac{1}{2^n}) =limx(22n1)
    = 2 =2 =2

  • (12) lim ⁡ n → ∞ 1 + 2 + 3 + ⋯ + ( n − 1 ) n 2 \lim_{n\rightarrow \infty}\frac{1+2+3+\cdots +(n-1)}{n^2} limnn21+2+3++(n1)
    = lim ⁡ n → ∞ n ( n − 1 ) 2 n 2 =\lim_{n\rightarrow \infty}\frac{n(n-1)}{2n^2} =limn2n2n(n1)
    = lim ⁡ n → ∞ ( 1 2 − 1 2 n ) =\lim_{n\rightarrow \infty}(\frac{1}{2}-\frac{1}{2n}) =limn(212n1)
    = 1 2 =\frac{1}{2} =21

  • (13) lim ⁡ n → ∞ ( n + 1 ) ( n + 2 ) ( n + 3 ) 5 n 3 \lim_{n\rightarrow \infty} \frac{(n+1)(n+2)(n+3)}{5n^3} limn5n3(n+1)(n+2)(n+3)
    = 1 5 ⋅ lim ⁡ n → ∞ n + 1 n ⋅ lim ⁡ n → ∞ n + 2 n ⋅ lim ⁡ n → ∞ n + 3 n =\frac{1}{5}\cdot \lim_{n\rightarrow \infty}\frac{n+1}{n}\cdot \lim_{n\rightarrow \infty}\frac{n+2}{n}\cdot \lim_{n\rightarrow \infty}\frac{n+3}{n} =51limnnn+1limnnn+2limnnn+3
    = 1 5 ⋅ 1 ⋅ 1 ⋅ 1 =\frac{1}{5}\cdot 1\cdot 1\cdot 1 =51111
    = 1 5 =\frac{1}{5} =51

  • (14) lim ⁡ x → 1 ( 1 1 − x − 3 1 − x 3 ) \lim_{x\rightarrow 1}(\frac{1}{1-x}-\frac{3}{1-x^3}) limx1(1x11x33)
    = lim ⁡ x → 1 ( x + 2 ) ( x − 1 ) 1 − x 3 =\lim_{x\rightarrow 1}\frac{(x+2)(x-1)}{1-x^3} =limx11x3(x+2)(x1)
    = lim ⁡ x → 1 − x + 2 x 2 + x + 1 =\lim_{x\rightarrow 1}-\frac{x+2}{x^2+x+1} =limx1x2+x+1x+2
    = − 1 =-1 =1

  • (15) lim ⁡ x → 2 x 3 + 2 x 2 ( x − 2 ) 2 \lim_{x\rightarrow 2}\frac{x^3+2x^2}{(x-2)^2} limx2(x2)2x3+2x2
    ∵ lim ⁡ x → 2 ( x − 2 ) 2 x 3 + 2 x 2 = 0 \because \lim_{x\rightarrow 2}\frac{(x-2)^2}{x^3+2x^2}=0 limx2x3+2x2(x2)2=0
    ∴ lim ⁡ x → 2 x 3 + 2 x 2 ( x − 2 ) 2 = ∞ \therefore \lim_{x\rightarrow 2}\frac{x^3+2x^2}{(x-2)^2}=\infty limx2(x2)2x3+2x2=

  • (16) lim ⁡ x → ∞ x 2 2 x + 1 \lim_{x\rightarrow \infty}\frac{x^2}{2x+1} limx2x+1x2
    ∵ lim ⁡ x → ∞ 2 x + 1 x 2 = 0 \because \lim_{x\rightarrow \infty}\frac{2x+1}{x^2}=0 limxx22x+1=0
    ∴ lim ⁡ x → ∞ x 2 2 x + 1 = ∞ \therefore \lim_{x\rightarrow \infty}\frac{x^2}{2x+1}=\infty limx2x+1x2=

  • (17) lim ⁡ x → ∞ ( 2 x 3 − x + 1 ) \lim_{x\rightarrow \infty}(2x^3-x+1) limx(2x3x+1)
    ∵ lim ⁡ x → ∞ 1 2 x 3 − x + 1 = 0 \because \lim_{x\rightarrow \infty}\frac{1}{2x^3-x+1}=0 limx2x3x+11=0
    ∴ lim ⁡ x → ∞ ( 2 x 3 − x + 1 ) = ∞ \therefore \lim_{x\rightarrow \infty}(2x^3-x+1)=\infty limx(2x3x+1)=

  • (18) lim ⁡ x → 0 ( x 2 s i n 1 x ) \lim_{x\rightarrow 0}(x^2sin\frac{1}{x}) limx0(x2sinx1)
    ∵ lim ⁡ x → 0 x 2 = 0 \because \lim_{x\rightarrow 0}x^2= 0 limx0x2=0 s i n 1 x sin\frac{1}{x} sinx1 为有界函数
    ∴ \therefore 原式 = 0 =0 =0


2.2 设 { a n } \lbrace a_n\rbrace {an} { b n } \lbrace b_n\rbrace {bn} { c n } \lbrace c_n\rbrace {cn}均为非负数列,且 lim ⁡ n → ∞ a n = 0 \lim_{n\rightarrow \infty}a_n=0 limnan=0 lim ⁡ n → ∞ b n = 1 \lim_{n\rightarrow \infty}b_n=1 limnbn=1 lim ⁡ n → ∞ c n = ∞ \lim_{n\rightarrow \infty}c_n=\infty limncn=。下列陈述中哪些是对的,哪些是错的?如果是对的,说明理由;如果是错的,试给出一个反例。
(1) a n < b n , n ∈ N + a_n<b_n, n\in N^+ an<bn,nN+
(2) b n < c n , n ∈ N + b_n<c_n, n\in N^+ bn<cn,nN+
(3) lim ⁡ n → ∞ a n c n \lim_{n\rightarrow \infty}a_nc_n limnancn 不存在;
(4) lim ⁡ n → ∞ b n c n \lim_{n\rightarrow \infty}b_nc_n limnbncn 不存在。

  • 答:

  • (1) 错。
    例如:
    lim ⁡ n → ∞ a n = lim ⁡ n → ∞ 4 n = 0 \lim_{n\rightarrow \infty}a_n=\lim_{n\rightarrow \infty}\frac{4}{n}=0 limnan=limnn4=0

    lim ⁡ n → ∞ b n = lim ⁡ n → ∞ ( 1 + 1 n ) = 1 \lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}(1+\frac{1}{n})=1 limnbn=limn(1+n1)=1
    n = 1 n=1 n=1 时,
    a 1 = 4 > b 1 = 2 a_1=4 > b_1=2 a1=4>b1=2
    a n < b n a_n<b_n an<bn 矛盾。

  • (2) 错。
    例如:
    lim ⁡ n → ∞ b n = lim ⁡ n → ∞ ( 1 + 1 n ) = 1 \lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}(1+\frac{1}{n})=1 limnbn=limn(1+n1)=1,

    lim ⁡ n → ∞ c n = lim ⁡ n → ∞ n = ∞ \lim_{n\rightarrow \infty}c_n=\lim_{n\rightarrow \infty}n=\infty limncn=limnn=.
    n = 1 n=1 n=1 时,
    b 1 = 2 > c 1 = 1 b_1=2 > c_1=1 b1=2>c1=1
    b n < c n b_n<c_n bn<cn 矛盾。

  • (3) 错。
    例如:
    a n = 1 n , c n = n a_n=\frac{1}{n},c_n=n an=n1,cn=n
    lim ⁡ n → ∞ a n = 0 \lim_{n\rightarrow \infty}a_n=0 limnan=0 lim ⁡ n → ∞ c n = ∞ \lim_{n\rightarrow \infty}c_n=\infty limncn=
    lim ⁡ n → ∞ a n c n = 1 \lim_{n\rightarrow \infty}a_nc_n=1 limnancn=1
    与 " lim ⁡ n → ∞ a n c n \lim_{n\rightarrow \infty}a_nc_n limnancn 不存在"矛盾。

  • (4) 对。
    假设 lim ⁡ n → ∞ b n c n \lim_{n\rightarrow \infty}b_nc_n limnbncn 存在。
    ∵ lim ⁡ n → ∞ b n \because \lim_{n\rightarrow \infty}b_n limnbn 存在,
    ∴ lim ⁡ n → ∞ 1 b n \therefore \lim_{n\rightarrow \infty}\frac{1}{b_n} limnbn1 存在,
    ∴ lim ⁡ n → ∞ b n c n ⋅ lim ⁡ n → ∞ 1 b n = lim ⁡ n → ∞ c n \therefore \lim_{n\rightarrow \infty}b_nc_n\cdot \lim_{n\rightarrow \infty}\frac{1}{b_n}=\lim_{n\rightarrow \infty}c_n limnbncnlimnbn1=limncn 存在,与题目给定的条件矛盾,
    ∴ lim ⁡ n → ∞ b n c n \therefore \lim_{n\rightarrow \infty}b_nc_n limnbncn 不存在


2.3 下列陈述中,哪些是对的,哪些是错的?如果是对的,说明理由;如果是错的,试给出一个反例。
(1) 如果 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0}f(x) limxx0f(x) 存在,但 lim ⁡ x → x 0 g ( x ) \lim_{x\rightarrow x_0}g(x) limxx0g(x) 不存在,那么 lim ⁡ x → x 0 [ f ( x ) + g ( x ) ] \lim_{x\rightarrow x_0}[f(x)+g(x)] limxx0[f(x)+g(x)]不存在;
(2) 如果 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0}f(x) limxx0f(x) lim ⁡ x → x 0 g ( x ) \lim_{x\rightarrow x_0}g(x) limxx0g(x) 都不存在,那么 lim ⁡ x → x 0 [ f ( x ) + g ( x ) ] \lim_{x\rightarrow x_0}[f(x)+g(x)] limxx0[f(x)+g(x)] 不存在;
(3) 如果 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0}f(x) limxx0f(x) 存在,但 lim ⁡ x → x 0 g ( x ) \lim_{x\rightarrow x_0}g(x) limxx0g(x) 不存在,那么 lim ⁡ x → x 0 f ( x ) ⋅ g ( x ) \lim_{x\rightarrow x_0}f(x)\cdot g(x) limxx0f(x)g(x) 不存在。

  • 答:
    (1) 对。
    ∵ \because 假设 lim ⁡ x → x 0 g ( x ) \lim_{x\rightarrow x_0}g(x) limxx0g(x) 存在,
    lim ⁡ x → x 0 g ( x ) = lim ⁡ x → x 0 [ f ( x ) + g ( x ) ] − lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0}g(x)=\lim_{x\rightarrow x_0}[f(x)+g(x)]-\lim_{x\rightarrow x_0}f(x) limxx0g(x)=limxx0[f(x)+g(x)]limxx0f(x) 存在,
    与题目给定的条件矛盾,
    ∴ \therefore lim ⁡ x → x 0 g ( x ) \lim_{x\rightarrow x_0}g(x) limxx0g(x) 不存在。

(2) 错。
假设 f ( x ) = − g ( x ) f(x)=-g(x) f(x)=g(x)
lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0}f(x) limxx0f(x) lim ⁡ x → x 0 g ( x ) \lim_{x\rightarrow x_0}g(x) limxx0g(x) 都不存在时,
lim ⁡ x → x 0 [ f ( x ) + g ( x ) ] \lim_{x\rightarrow x_0}[f(x)+g(x)] limxx0[f(x)+g(x)] 存在,为0。

(3) 错。
假设 f ( x ) = 1 g ( x ) f(x)=\frac{1}{g(x)} f(x)=g(x)1
lim ⁡ x → x 0 f ( x ) = 0 \lim_{x\rightarrow x_0}f(x)=0 limxx0f(x)=0 lim ⁡ x → x 0 g ( x ) = ∞ \lim_{x\rightarrow x_0}g(x)=\infty limxx0g(x)=
lim ⁡ x → x 0 [ f ( x ) ⋅ g ( x ) ] \lim_{x\rightarrow x_0}[f(x)\cdot g(x)] limxx0[f(x)g(x)] 存在,为1。


证明如果 lim ⁡ f ( x ) = A \lim f(x)=A limf(x)=A lim ⁡ g ( x ) = B \lim g(x)=B limg(x)=B,那么 lim ⁡ [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B \lim [f(x)\cdot g(x)]=\lim f(x)\cdot \lim g(x)=A\cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB

  • 证明
    ∵ lim ⁡ f ( x ) = A \because \lim f(x)=A limf(x)=A lim ⁡ g ( x ) = B \lim g(x)=B limg(x)=B
    ∴ f ( x ) = A + α \therefore f(x)=A+\alpha f(x)=A+α g ( x ) = B + β g(x)=B+\beta g(x)=B+β
    ∴ f ( x ) ⋅ g ( x ) = ( A + α ) ⋅ ( B + β ) = A B + β B + α B + α β \therefore f(x)\cdot g(x)=(A+\alpha )\cdot (B+\beta)= AB + \beta B+ \alpha B + \alpha \beta f(x)g(x)=(A+α)(B+β)=AB+βB+αB+αβ
    ∵ β B \because \beta B βB α B \alpha B αB α β \alpha \beta αβ 均为无穷小
    ∴ lim ⁡ [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B \therefore \lim [f(x)\cdot g(x)]=\lim f(x)\cdot \lim g(x)=A\cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB

  • 学习资料
    1.《高等数学(第六版)》 上册,同济大学数学系 编

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com