欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 汽车 > 维修 > 四元数转旋转矩阵

四元数转旋转矩阵

2025/4/25 12:49:53 来源:https://blog.csdn.net/jacke121/article/details/147389003  浏览:    关键词:四元数转旋转矩阵

目录

gsplat 四元数转旋转矩阵等同代码实现

scipy 四元数转旋转矩阵替换代码


gsplat 四元数转旋转矩阵等同代码实现


import torch
import torch.nn.functional as Fdef quat_act(x: torch.Tensor) -> torch.Tensor:return x / x.norm(dim=-1, keepdim=True)def normalized_quat_to_rotmat(quat: torch.Tensor) -> torch.Tensor:# 源码来自: from gsplat.utils import normalized_quat_to_rotmat"""Convert normalized quaternion to rotation matrix.Args:quat: Normalized quaternion in wxyz convension. (..., 4)Returns:Rotation matrix (..., 3, 3)"""assert quat.shape[-1] == 4, quat.shapew, x, y, z = torch.unbind(quat, dim=-1)mat = torch.stack([1 - 2 * (y**2 + z**2),2 * (x * y - w * z),2 * (x * z + w * y),2 * (x * y + w * z),1 - 2 * (x**2 + z**2),2 * (y * z - w * x),2 * (x * z - w * y),2 * (y * z + w * x),1 - 2 * (x**2 + y**2),],dim=-1,)return mat.reshape(quat.shape[:-1] + (3, 3))def quat2mat(quat):qw, qx, qy, qz = torch.unbind(quat, dim=-1)  # 原为wxyzquat_xyzw = torch.stack([qx, qy, qz, qw], dim=-1)  # 转为xyzw顺序# 后续代码保持原逻辑qx, qy, qz, qw = torch.unbind(quat_xyzw, dim=-1)# 计算旋转矩阵R00 = 1 - 2 * (qy ** 2 + qz ** 2)R01 = 2 * (qx * qy - qw * qz)R02 = 2 * (qx * qz + qw * qy)R10 = 2 * (qx * qy + qw * qz)R11 = 1 - 2 * (qx ** 2 + qz ** 2)R12 = 2 * (qy * qz - qw * qx)R20 = 2 * (qx * qz - qw * qy)R21 = 2 * (qy * qz + qw * qx)R22 = 1 - 2 * (qx ** 2 + qy ** 2)# 将旋转矩阵堆叠在一起matrix = torch.stack([R00, R01, R02, R10, R11, R12, R20, R21, R22], dim=-1)# 变换为 3x3 的矩阵return matrix.view(-1, 3, 3)x=torch.range(0,3*4-1)x=x.reshape(-1,4)print(x)# 调用 quat_act 函数进行归一化
normalized_x = quat_act(x)aa=F.normalize(x, dim=-1)print('diff',(normalized_x-aa).sum(dim=-1))
print("\nNormalized x:")
print(aa)  # 应该返回一个全为 1 的张量if 1:mat= normalized_quat_to_rotmat(aa)print(mat)mat2=quat2mat(aa)print('diff2', (mat2 - mat).sum(dim=-1))

scipy 四元数转旋转矩阵替换代码

import torch
from scipy.spatial.transform import Rotation as R
import torch.nn.functional as F
def quat2mat_scipy(quat):# 从四元数中提取 qx, qy, qz, qwqx, qy, qz, qw = torch.unbind(quat, dim=-1)# 计算旋转矩阵R00 = 1 - 2 * (qy ** 2 + qz ** 2)R01 = 2 * (qx * qy - qw * qz)R02 = 2 * (qx * qz + qw * qy)R10 = 2 * (qx * qy + qw * qz)R11 = 1 - 2 * (qx ** 2 + qz ** 2)R12 = 2 * (qy * qz - qw * qx)R20 = 2 * (qx * qz - qw * qy)R21 = 2 * (qy * qz + qw * qx)R22 = 1 - 2 * (qx ** 2 + qy ** 2)# 将旋转矩阵堆叠在一起matrix = torch.stack([R00, R01, R02, R10, R11, R12, R20, R21, R22], dim=-1)# 变换为 3x3 的矩阵return matrix.view(-1, 3, 3)if 1:x = torch.range(0, 3 * 4 - 1)x = x.reshape(-1, 4)aa = F.normalize(x, dim=-1)r = R.from_quat(aa.numpy())mat3= r.as_matrix()mat4=quat2mat_scipy(aa)print('diff3', (mat4.numpy() - mat3).sum(axis=-1))

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词