文章目录
- 1. torch_bmm
- 2. pytorch源码
1. torch_bmm
torch.bmm的作用是基于batch_size的矩阵乘法,torch.bmm的作用是对应batch位置的矩阵相乘,比如,
- mat1的第
1
个位置和mat2的第1
个位置进行矩阵相乘得到mat3的第1
个位置 - mat1的第
2
个位置和mat2的第2
个位置进行矩阵相乘得到mat3的第2
个位置
2. pytorch源码
import torch
import torch.nn as nn
import torch.nn.functional as Ftorch.set_printoptions(precision=3, sci_mode=False)if __name__ == "__main__":run_code = 0batch_size = 2mat1_h = 3mat1_w = 4mat1_total = batch_size * mat1_w * mat1_hmat2_h = 4mat2_w = 5mat2_total = batch_size * mat2_w * mat2_hmat1 = torch.arange(mat1_total).reshape((batch_size, mat1_h, mat1_w))mat2 = torch.arange(mat2_total).reshape((batch_size, mat2_h, mat2_w))mat3 = torch.bmm(mat1, mat2)print(f"mat1=\n{mat1}")print(f"mat2=\n{mat2}")print(f"mat3=\n{mat3}")
- 结果:
mat1=
tensor([[[ 0, 1, 2, 3],[ 4, 5, 6, 7],[ 8, 9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
mat2=
tensor([[[ 0, 1, 2, 3, 4],[ 5, 6, 7, 8, 9],[10, 11, 12, 13, 14],[15, 16, 17, 18, 19]],[[20, 21, 22, 23, 24],[25, 26, 27, 28, 29],[30, 31, 32, 33, 34],[35, 36, 37, 38, 39]]])
mat3=
tensor([[[ 70, 76, 82, 88, 94],[ 190, 212, 234, 256, 278],[ 310, 348, 386, 424, 462]],[[1510, 1564, 1618, 1672, 1726],[1950, 2020, 2090, 2160, 2230],[2390, 2476, 2562, 2648, 2734]]])