欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 资讯 > 信息学奥赛一本通 2087:【22CSPJ普及组】解密(decode) | 洛谷 P8814 [CSP-J 2022] 解密

信息学奥赛一本通 2087:【22CSPJ普及组】解密(decode) | 洛谷 P8814 [CSP-J 2022] 解密

2024/11/18 0:40:42 来源:https://blog.csdn.net/lq1990717/article/details/142714391  浏览:    关键词:信息学奥赛一本通 2087:【22CSPJ普及组】解密(decode) | 洛谷 P8814 [CSP-J 2022] 解密

【题目链接】

洛谷 P8814 [CSP-J 2022] 解密
ybt 2087:【22CSPJ普及组】解密(decode)

【题目考点】

1. 数学:一元二次方程求根

【解题思路】

输入n,d,e,满足
n = p ∗ q n=p*q n=pq
e ∗ d = ( p − 1 ) ( q − 1 ) + 1 e*d=(p-1)(q-1)+1 ed=(p1)(q1)+1
= p ∗ q − p − q + 2 = n − p − q + 2 =p*q-p-q+2=n-p-q+2 =pqpq+2=npq+2
所以 p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2

解法1:枚举(60分)

因此是一个二元方程组求解的问题
p ∗ q = n p*q=n pq=n
p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2
使用枚举算法,求方程组的解,在输入数据较小时可以得到解。
该代码得分:60分。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main()
{ios::sync_with_stdio(false);cin.tie(nullptr);LL k, n, d, e;cin >> k;while(k--){cin >> n >> d >> e;bool hasAns = false;for(LL p = 1; p*p <= n; ++p) if(n%p == 0){LL q = n/p;if(p+q == n-e*d+2){cout << p << ' ' << q << '\n';hasAns = true;break;}}if(!hasAns)cout << "NO" << '\n';}return 0;
}
解法2:一元二次方程求根

已知
p ∗ q = n p*q=n pq=n
p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2
p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2两边乘以p,得:
p 2 + p ∗ q = p ( n − e ∗ d + 2 ) p^2+p*q=p(n-e*d+2) p2+pq=p(ned+2)
p 2 + ( e ∗ d − n − 2 ) p + n = 0 p^2+(e*d-n-2)p+n = 0 p2+(edn2)p+n=0
p + q = n − e ∗ d + 2 p+q=n-e*d+2 p+q=ned+2两边乘以q,得:
q 2 + p ∗ q = q ( n − e ∗ d + 2 ) q^2+p*q=q(n-e*d+2) q2+pq=q(ned+2)
q 2 + ( e ∗ d − n − 2 ) q + n = 0 q^2+(e*d-n-2)q+n = 0 q2+(edn2)q+n=0
显然p、q是一元二次方程 x 2 + ( e ∗ d − n − 2 ) x + n = 0 x^2+(e*d-n-2)x+n=0 x2+(edn2)x+n=0的两个根。
已知一元二次方程两根分别为 − b ± b 2 − 4 a c 2 a \frac{-b \pm\sqrt{b^2-4ac}}{2a} 2ab±b24ac
该方程中 a = 1 , b = e ∗ d − n − 2 , c = n a = 1, b = e*d-n-2, c = n a=1,b=edn2,c=n
因此,两根p、q为 − b ± b 2 − 4 c -b \pm\sqrt{b^2-4c} b±b24c
由于p、q都是正整数,那么首先 b 2 − 4 c b^2-4c b24c必须是完全平方数,开方后是一个正整数。同时 − b ± b 2 − 4 c -b \pm\sqrt{b^2-4c} b±b24c 都必须大于0。
将满足该条件的 − b ± b 2 − 4 c -b \pm\sqrt{b^2-4c} b±b24c 输出,先输出较小的根 − b − b 2 − 4 c -b -\sqrt{b^2-4c} bb24c ,再输出较大的跟 − b + b 2 − 4 c -b +\sqrt{b^2-4c} b+b24c

【题解代码】

解法2:一元二次方程求根
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main()
{ios::sync_with_stdio(false);cin.tie(nullptr);LL k, n, d, e, delta, b, c, p, q, sq;cin >> k;for(int i = 1; i <= k; ++i){cin >> n >> d >> e;b = -n+e*d-2;c = n;delta = b*b-4*c;sq = sqrt(delta);if(sq*sq == delta)//delta是完全平方数 {p = (-b-sq)/2, q = (-b+sq)/2;if(p > 0 && q > 0)cout << p << ' ' << q << '\n';elsecout << "NO\n";}elsecout << "NO\n";}return 0;
}

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com