欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 社会 > 基于langchain框架的智能PDF问答(一)创建向量数据库

基于langchain框架的智能PDF问答(一)创建向量数据库

2025/1/8 19:36:43 来源:https://blog.csdn.net/hanghang20030820/article/details/143335794  浏览:    关键词:基于langchain框架的智能PDF问答(一)创建向量数据库

首先安装langchain,安装完之后就可以开始我们的步骤了

pip install langchain

第一步

我们可以先创建一个Python文件,用于将PDF加载到我们本地的向量数据库中
一、读取文档
加载PDFX需要用到文本加载器,导入PyPDFLoader这个函数

#读取文档
from langchain.document_loaders import PyPDFLoader
##文档路径
temp_file_path = "10.19.pdf"
##解析文档
loader = PyPDFLoader(temp_file_path)
##转换文档格式
docs = loader.load()

二、文本分割
因为大语言模型通常都有输入字数限制,所以需要对文本就行切割传输,这里用到文本切割器,需要用到库中RecursiveCharacterTextSplitter这个函数

#文本切割
from langchain_text_splitters import RecursiveCharacterTextSplitter
##创建一个文本切割器
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100,##每个文本块的大小chunk_overlap=50,##与前面重叠的大小separators=["\n", "。", "!", "?", ",", "、", ""]#分隔符
)
##使用创建的文本分割器对文本进行分割
texts = text_splitter.split_documents(docs)

三、创建嵌入模型
我这里使用的是百度千帆大模型,因为一开始注册会提供20元的卷,这里需要你自己去注册申请AK和SK
至于为什么创建的是嵌入模型,嵌入模型的主要任务是将自然语言文本转换为数字向量,使得模型能够理解和处理文本数据。
这里需要引入os(设置环境变量),QianfanEmbeddingsEndpoint(千帆嵌入模型)

#创建嵌入模型
import os
from langchain_community.embeddings import QianfanEmbeddingsEndpoint##设置环境变量
os.environ['QIANFAN_AK'] = "你自己的AK"
os.environ['QIANFAN_SK'] = "你自己的SK"
##创建模型
embeddings_model = QianfanEmbeddingsEndpoint()

四、创建本地向量数据库,并添入向量数据
这里我用的Chroma向量数据库,相应的也需要引用这个函数Chroma

#创建本地向量数据库
from langchain.vectorstores import Chroma
##数量数据库保存位置
persist_directory = 'date'
##通过嵌入模型,创建向量数据库
vectordb = Chroma(embedding_function=embeddings_model,##调用刚刚创建的嵌入模型persist_directory=persist_directory##向量数据库保存位置
)#将处理好的pdf数据添加到向量数据库中
vectordb.add_documents(documents=texts
)
# 确保持久化保存更新
vectordb.persist()

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com