lift-提升度
-
Lift衡量的是,与不利用模型相比,
模型的预测能力
“变好”了多少,结合二分类模型的混淆矩阵预测positive 预测negative 实际positive TP FN 实际negative FP TN l i f t = p r e c i s i o n 实际正样本率 = T P T P + F P T P + F N T P + T N + F N + F P lift = \frac{precision}{实际正样本率} = \frac{\frac{TP}{TP+FP}}{\frac{TP+FN}{TP+TN+FN+FP}} lift=实际正样本率precision=TP+TN+FN+FPTP+FNTP+FPTP
-
例子
import pandas as pd import numpy as np from sklearn.metrics import precision_score as psy_true = np.array([1,1,0,0,0,0,0,0,0,0]) y_pred = np.array([1,1,0,0,0,1,1,0,0,0])# 精准、查准、命中 precision = ps(y_true,y_pred) #0.5 # 真实正样本 pos_rate = y_true.sum()/y_true.shape[0] # 0.2# 提升度 lift = precision / pos_rate lift"""输出""" 2.5