欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 国际 > 深度学习之神经网络框架搭建及模型优化

深度学习之神经网络框架搭建及模型优化

2025/2/12 14:53:24 来源:https://blog.csdn.net/m0_64588135/article/details/145508011  浏览:    关键词:深度学习之神经网络框架搭建及模型优化

神经网络框架搭建及模型优化

目录

  • 神经网络框架搭建及模型优化
    • 1 数据及配置
      • 1.1 配置
      • 1.2 数据
      • 1.3 函数导入
      • 1.4 数据函数
      • 1.5 数据打包
    • 2 神经网络框架搭建
      • 2.1 框架确认
      • 2.2 函数搭建
      • 2.3 框架上传
    • 3 模型优化
      • 3.1 函数理解
      • 3.2 训练模型和测试模型代码
    • 4 最终代码测试
      • 4.1 SGD优化算法
      • 4.2 Adam优化算法
      • 4.3 多次迭代

1 数据及配置


1.1 配置

需要安装PyTorch,下载安装torch、torchvision、torchaudio,GPU需下载cuda版本,CPU可直接下载

cuda版本较大,最后通过控制面板pip install +存储地址离线下载,
CPU版本需再下载安装VC_redist.x64.exe,可下载上述三个后运行,通过报错网址直接下载安装

1.2 数据

使用的是 torchvision.datasets.MNIST的手写数据,包括特征数据和结果类别

1.3 函数导入

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

1.4 数据函数

train_data = datasets.MNIST(root='data',        # 数据集存储的根目录train=True,         # 加载训练集download=True,      # 如果数据集不存在,自动下载transform=ToTensor() # 将图像转换为张量
)
  • root 指定数据集存储的根目录。如果数据集不存在,会自动下载到这个目录。
  • train 决定加载训练集还是测试集。True 表示加载训练集,False 表示加载测试集。
  • download 如果数据集不在 root 指定的目录中,是否自动下载数据集。True 表示自动下载。
  • transform 对加载的数据进行预处理或转换。通常用于将数据转换为模型所需的格式,如将图像转换为张量。

1.5 数据打包

train_dataloader = DataLoader(train_data, batch_size=64)

  • train_data, 打包数据
  • batch_size=64,打包个数

代码展示:

import torch
print(torch.__version__)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensortrain_data = datasets.MNIST(root = 'data',train = True,download = True,transform = ToTensor()
)
test_data = datasets.MNIST(root = 'data',train = False,download = True,transform = ToTensor()
)
print(len(train_data))
print(len(test_data))
from matplotlib import pyplot as plt
figure = plt.figure()
for i in range(9):img,label = train_data[i+59000]figure.add_subplot(3,3,i+1)plt.title(label)plt.axis('off')plt.imshow(img.squeeze(),cmap='gray')a = img.squeeze()
plt.show()train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader= DataLoader(test_data, batch_size=64)

运行结果:
在这里插入图片描述

在这里插入图片描述

调试查看:

在这里插入图片描述
:

2 神经网络框架搭建


2.1 框架确认

在搭建神经网络框架前,需先确认建立怎样的框架,目前并没有理论的指导,凭经验建立框架如下:

输入层:输入的图像数据(28*28)个神经元。
中间层1:全连接层,128个神经元,
中间层2:全连接层,256个神经元,
输出层:全连接层,10个神经元,对应10个类别。
需注意,中间层需使用激励函数激活,对累加数进行非线性的映射,以及forward前向传播过程的函数名不可更改

2.2 函数搭建

  • nn.Flatten() , 将输入展平为一维向量
  • nn.Linear(28*28, 128) ,全连接层,需注意每个连接层的输入输出需前后对应
  • torch.sigmoid(x),对中间层的输出应用Sigmoid激活函数
# 定义一个神经网络类,继承自 nn.Module
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()  # 调用父类 nn.Module 的构造函数# 定义网络层self.flatten = nn.Flatten()  # 将输入展平为一维向量,适用于将图像数据(如28x28)展平为784维self.hidden1 = nn.Linear(28*28, 128)  # 第一个全连接层,输入维度为784(28*28),输出维度为128self.hidden2 = nn.Linear(128, 256)    # 第二个全连接层,输入维度为128,输出维度为256self.out = nn.Linear(256, 10)         # 输出层,输入维度为256,输出维度为10(对应10个类别)# 定义前向传播过程def forward(self, x):x = self.flatten(x)       # 将输入数据展平x = self.hidden1(x)       # 通过第一个全连接层x = torch.sigmoid(x)      # 对第一个全连接层的输出应用Sigmoid激活函数x = self.hidden2(x)       # 通过第二个全连接层x = torch.sigmoid(x)      # 对第二个全连接层的输出应用Sigmoid激活函数x = self.out(x)           # 通过输出层return x                  # 返回最终的输出

2.3 框架上传

  • device = ‘cuda’ if torch.cuda.is_available() else ‘mps’ if torch.backends.mps.is_available() else ‘cpu’,确认设备, 检查是否有可用的GPU设备,如果有则使用GPU,否则使用CPU
  • model = NeuralNetwork().to(device),框架上传到GPU/CPU

模型输出展示:

在这里插入图片描述

3 模型优化


3.1 函数理解

  • optimizer = torch.optim.Adam(model.parameters(), lr=0.001),定义优化器:
    • Adam()使用Adam优化算法,也可为SGD等优化算法
    • model.parameters()为优化模型的参数
    • lr为学习率/梯度下降步长为0.001
  • loss_fn = nn.CrossEntropyLoss(pre,y),定义损失函数,使用交叉熵损失函数,适用于分类任务
    • pre,预测结果
    • y,真实结果
    • loss_fn.item(),当前损失值
  • model.train() ,将模型设置为训练模式,模型参数是可变
  • x, y = x.to(device), y.to(device),将数据移动到指定设备(GPU或CPU)
  • 反向传播:清零梯度,计算梯度,更新模型参数
    • optimizer.zero_grad()清零梯度缓存
      loss.backward(), 计算梯度
      optimizer.step()更新模型参数
  • model.eval(),将模型设置为评估模式模型参数是不可变
  • with torch.no_grad(),禁用梯度计算,在测试过程中不需要计算梯度

3.2 训练模型和测试模型代码

optimizer = torch.optim.Adam(model.parameters(),lr=0.001)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num = 1for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)loss = loss_fn(pred,y)optimizer.zero_grad()loss.backward()optimizer.step()loss_value = loss.item()if batch_size_num %100 ==0:print(f'loss: {loss_value:>7f}  [number: {batch_size_num}]')batch_size_num +=1train(train_dataloader,model,loss_fn,optimizer)def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss,correct = 0,0with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct +=(pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1)==y)b = (pred.argmax(1)==y).type(torch.float)test_loss /=num_batchescorrect /= sizeprint(f'test result: \n Accuracy: {(100*correct)}%, Avg loss:{test_loss}')

4 最终代码测试


4.1 SGD优化算法

torch.optim.SGD(model.parameters(),lr=0.01)

代码展示:

import torchprint(torch.__version__)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensortrain_data = datasets.MNIST(root = 'data',train = True,download = True,transform = ToTensor()
)
test_data = datasets.MNIST(root = 'data',train = False,download = True,transform = ToTensor()
)
print(len(train_data))
print(len(test_data))
from matplotlib import pyplot as plt
figure = plt.figure()
for i in range(9):img,label = train_data[i+59000]figure.add_subplot(3,3,i+1)plt.title(label)plt.axis('off')plt.imshow(img.squeeze(),cmap='gray')a = img.squeeze()
plt.show()train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader= DataLoader(test_data, batch_size=64)
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
print(f'Using {device} device')
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.hidden1 = nn.Linear(28*28,128)self.hidden2 = nn.Linear(128, 256)self.out = nn.Linear(256,10)def forward(self,x):x = self.flatten(x)x = self.hidden1(x)x = torch.sigmoid(x)x = self.hidden2(x)x = torch.sigmoid(x)x = self.out(x)return x
model = NeuralNetwork().to(device)
#
print(model)
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num = 1for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)loss = loss_fn(pred,y)optimizer.zero_grad()loss.backward()optimizer.step()loss_value = loss.item()if batch_size_num %100 ==0:print(f'loss: {loss_value:>7f}  [number: {batch_size_num}]')batch_size_num +=1def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss,correct = 0,0with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct +=(pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1)==y)b = (pred.argmax(1)==y).type(torch.float)test_loss /=num_batchescorrect /= sizeprint(f'test result: \n Accuracy: {(100*correct)}%, Avg loss:{test_loss}')
#train(train_dataloader,model,loss_fn,optimizer)
test(test_dataloader,model,loss_fn)

运行结果:
在这里插入图片描述

4.2 Adam优化算法

自适应算法,torch.optim.Adam(model.parameters(),lr=0.01)

运行结果:
在这里插入图片描述

4.3 多次迭代

代码展示:

import torchprint(torch.__version__)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensortrain_data = datasets.MNIST(root = 'data',train = True,download = True,transform = ToTensor()
)
test_data = datasets.MNIST(root = 'data',train = False,download = True,transform = ToTensor()
)
print(len(train_data))
print(len(test_data))
from matplotlib import pyplot as plt
figure = plt.figure()
for i in range(9):img,label = train_data[i+59000]figure.add_subplot(3,3,i+1)plt.title(label)plt.axis('off')plt.imshow(img.squeeze(),cmap='gray')a = img.squeeze()
plt.show()train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader= DataLoader(test_data, batch_size=64)
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
print(f'Using {device} device')
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.hidden1 = nn.Linear(28*28,128)self.hidden2 = nn.Linear(128, 256)self.out = nn.Linear(256,10)def forward(self,x):x = self.flatten(x)x = self.hidden1(x)x = torch.sigmoid(x)x = self.hidden2(x)x = torch.sigmoid(x)x = self.out(x)return x
model = NeuralNetwork().to(device)
#
print(model)
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num = 1for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)loss = loss_fn(pred,y)optimizer.zero_grad()loss.backward()optimizer.step()loss_value = loss.item()if batch_size_num %100 ==0:print(f'loss: {loss_value:>7f}  [number: {batch_size_num}]')batch_size_num +=1def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss,correct = 0,0with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct +=(pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1)==y)b = (pred.argmax(1)==y).type(torch.float)test_loss /=num_batchescorrect /= sizeprint(f'test result: \n Accuracy: {(100*correct)}%, Avg loss:{test_loss}')
#train(train_dataloader,model,loss_fn,optimizer)
test(test_dataloader,model,loss_fn)
#
e = 30
for i in range(e):print(f'e: {i+1}\n------------------')train(train_dataloader, model, loss_fn, optimizer)
print('done')test(test_dataloader, model, loss_fn)

运行结果:
在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com