欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 国际 > 365打卡第J6周:ResNeXt-50实战解析

365打卡第J6周:ResNeXt-50实战解析

2025/4/7 20:02:38 来源:https://blog.csdn.net/weixin_42570076/article/details/146612021  浏览:    关键词:365打卡第J6周:ResNeXt-50实战解析
  •    🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

论文主要内容总结:

核心贡献

论文提出了 ResNeXt 网络架构,通过引入 基数(Cardinality) 这一新维度(即并行分支的数量),结合残差学习(ResNet)和分组卷积(Grouped Convolutions)的优势,显著提升了模型性能。基数与深度、宽度并列,成为调节模型容量的关键因素,且在保持计算复杂度不变的条件下,增加基数比增加深度或宽度更有效。


核心思想
  1. 模块化设计
    ResNeXt 的构建块采用 重复的残差模块,每个模块包含多个 相同拓扑的子分支(split-transform-merge 策略)。每个分支通过低维嵌入(如 1×1 卷积)进行特征变换,最终通过求和聚合结果(图1右)。

    • 基数(C) 表示分支数量,控制模型的复杂度与表达能力。

    • 通过分组卷积(图3c)实现高效计算,避免 Inception 系列的复杂设计。

  2. 等效形式
    模块可通过以下三种形式等价实现(图3):

    • 分支聚合(图3a):各分支独立计算后相加。

    • 早期拼接(图3b):类似 Inception-ResNet,但分支结构相同。

    • 分组卷积(图3c):直接通过分组卷积实现稀疏连接。

  3. 设计原则

    • 复杂度控制:通过调整基数与瓶颈宽度(bottleneck width)平衡模型容量。

    • 残差连接:保留 ResNet 的跳跃连接,确保优化稳定性。


实验结果
  1. ImageNet-1K

    • ResNeXt-101(32×4d)在相同计算量下,Top-1 错误率比 ResNet-101 低 0.8%

    • 增加基数(如 64×4d)优于增加深度(ResNet-200)或宽度(Wide ResNet),Top-1 错误率降至 20.4%(表4)。

  2. ImageNet-5K

    • 在更大规模数据集上,ResNeXt 相比 ResNet 显著降低分类错误率(5K-way Top-1 错误率降低 2.3%),证明其更强的表征能力(表6)。


意义与影响

ResNeXt 为深度网络设计提供了新方向,尤其在资源受限场景下(如移动端),通过调整基数而非盲目增加深度/宽度,可实现更高效的模型。其思想被后续工作(如 MobileNet、ShuffleNet)广泛借鉴,成为轻量化网络设计的重要基础。

论文代码复现

#配置GPU
import os, PIL, random, pathlib
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import torch.nn.functional as Fdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(device)#导入数据集
data_dir = './data/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
print(classeNames)image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:", image_count)#数据预处理+划分数据集
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])test_transform = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("./data/", transform=train_transforms)
print(total_data.class_to_idx)train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=0)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

模型搭建

class BN_Conv2d(nn.Module):"""BN_CONV_RELU"""def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bias=False):super(BN_Conv2d, self).__init__()self.seq = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,padding=padding, dilation=dilation, groups=groups, bias=bias),nn.BatchNorm2d(out_channels))def forward(self, x):return F.relu(self.seq(x))class ResNeXt_Block(nn.Module):"""ResNeXt block with group convolutions"""def __init__(self, in_chnls, cardinality, group_depth, stride):super(ResNeXt_Block, self).__init__()self.group_chnls = cardinality * group_depthself.conv1 = BN_Conv2d(in_chnls, self.group_chnls, 1, stride=1, padding=0)self.conv2 = BN_Conv2d(self.group_chnls, self.group_chnls, 3, stride=stride, padding=1, groups=cardinality)self.conv3 = nn.Conv2d(self.group_chnls, self.group_chnls*2, 1, stride=1, padding=0)self.bn = nn.BatchNorm2d(self.group_chnls*2)self.short_cut = nn.Sequential(nn.Conv2d(in_chnls, self.group_chnls*2, 1, stride, 0, bias=False),nn.BatchNorm2d(self.group_chnls*2))def forward(self, x):out = self.conv1(x)out = self.conv2(out)out = self.bn(self.conv3(out))out += self.short_cut(x)return F.relu(out)class ResNeXt(nn.Module):"""ResNeXt builder"""def __init__(self, layers: object, cardinality, group_depth, num_classes) -> object:super(ResNeXt, self).__init__()self.cardinality = cardinalityself.channels = 64self.conv1 = BN_Conv2d(3, self.channels, 7, stride=2, padding=3)d1 = group_depthself.conv2 = self.___make_layers(d1, layers[0], stride=1)d2 = d1 * 2self.conv3 = self.___make_layers(d2, layers[1], stride=2)d3 = d2 * 2self.conv4 = self.___make_layers(d3, layers[2], stride=2)d4 = d3 * 2self.conv5 = self.___make_layers(d4, layers[3], stride=2)self.fc = nn.Linear(self.channels, num_classes)   # 224x224 input sizedef ___make_layers(self, d, blocks, stride):strides = [stride] + [1] * (blocks-1)layers = []for stride in strides:layers.append(ResNeXt_Block(self.channels, self.cardinality, d, stride))self.channels = self.cardinality*d*2return nn.Sequential(*layers)def forward(self, x):out = self.conv1(x)out = F.max_pool2d(out, 3, 2, 1)out = self.conv2(out)out = self.conv3(out)out = self.conv4(out)out = self.conv5(out)out = F.avg_pool2d(out, 7)out = out.view(out.size(0), -1)out = F.softmax(self.fc(out),dim=1)return out

训练

 
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)  # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()  # 反向传播optimizer.step()  # 每一步自动更新# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_lossdef test(dataloader, model, loss_fn):size = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)  # 批次数目test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_lossimport copyoptimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数epochs = 10train_loss = []
train_acc = []
test_loss = []
test_acc = []best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):# 更新学习率(使用自定义学习率时使用)# adjust_learning_rate(optimizer, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)# scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,epoch_test_acc * 100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)print('Done')

小结

完全独立复现论文还是比较吃力,还需要多读多运行代码,积累经验。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词