欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 资讯 > 归并排序/计数排序

归并排序/计数排序

2024/11/7 3:31:13 来源:https://blog.csdn.net/m0_51952310/article/details/141995015  浏览:    关键词:归并排序/计数排序

1:归并排序

1.1:代码

void _MergeSort(int* arr, int left, int right, int* tmp)
{if (left >= right){return;}int mid = (left + right) / 2;						_MergeSort(arr, left, mid, tmp);					_MergeSort(arr, mid+1, right, tmp);					int begin1 = left;									int end1 = mid;										int begin2 = mid + 1;								int end2 = right;									int i = begin1;										while (begin1 <= end1 && begin2 <= end2)			{													if(arr[begin1] < arr[begin2])					{												tmp[i++] = arr[begin1++];					}												if (arr[begin1] > arr[begin2])					{												tmp[i++] = arr[begin2++];					}												}													while (begin1 <= end1)								{													tmp[i++] = arr[begin1++];						}													while (begin2 <= end2)								{													tmp[i++] = arr[begin2++];						}													for (int i = left; i <= right; i++)					{													arr[i] = tmp[i];								}										    
}void MergeSort(int* arr, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);	_MergeSort(arr, 0, n - 1, tmp);
}

1.2:递归过程

图一:

	if (left >= right){return;}int mid = (left + right) / 2;						_MergeSort(arr, left, mid, tmp);					_MergeSort(arr, mid+1, right, tmp);		

通过这三行代码,可以得到如图所示的结果,当传递的 left 和 right 满足 if 条件时,递归开始返回,

图二:

注:方框内容为自定义函数:void _MergeSort(int* arr, int left, int right, int* tmp)

注:对于新手(编者我而言)需要知道的是,每次递归,都会向系统开辟新的空间,而原先的空间会临时贮存在空间中,通过return返回重新调用该函数。

第一次返回时,来到D这个位置,接下来就将执行排序,即如下代码:该函数中 left = 0  mid = 0 right = 1,是对两个元素进行排列。

int begin1 = left;						
int end1 = mid;							
int begin2 = mid + 1;					
int end2 = right;						int i = begin1;							
while (begin1 <= end1 && begin2 <= end2)
{										if(arr[begin1] < arr[begin2])		{									tmp[i++] = arr[begin1++];		}									if (arr[begin1] > arr[begin2])		{									tmp[i++] = arr[begin2++];		}									
}										while (begin1 <= end1)					
{										tmp[i++] = arr[begin1++];			
}										
while (begin2 <= end2)					
{										tmp[i++] = arr[begin2++];			
}										

当前范围内的数组排列完毕时,需要将临时数组的值传递给原数组,以便于下一次继续比较排序,

代码如下:

for (int i = left; i <= right; i++)	
{									arr[i] = tmp[i];				
}									

left 和 right 分别对应数组左右临界,而left ~ right 中间的范围正是需要赋值的对象。

当D排序完毕后,系统会将其释放,此时来到B处,开始对右边数组开始递归,直至return,与左边递归类似,如图三所示:

图三:

当D中和E中的数组全部排列完毕,并且赋值给原数组时,此时会返回到B,对B中数组元素进行排列,,最后我们能够得到如下图所示的结果:

图四:

到B中函数排列完毕,并将临时数组中的值赋值给arr时,此时系统会将其空间释放,并返回到A中,开始递归右边部分函数,其过程如下图所示。

图五:

而对于右半部分的递归与左半部分相似,对于新人而言(我)注意其左临界值left的变化即可,其次通过上述过程不难发现,归并排序其实是一个后序遍历二叉树结点的过程,通过对左右子节点中的数组元素进行排列,最终在根节点处再次排列得到有序数组。

1.3:归并排序特性总结

时间复杂度:O(nlogn)

空间复杂度:O(n) —— 至于为什么是 n 而不是 logn 是因为以malloc 开辟了一块 n 大小的内存空间

2:计数排序

2.1:代码

void CountSort(int* arr, int n)		
{									int max, min;max = min = arr[0];for (int i = 0; i < n; i++){if (arr[i] > max){max = arr[i];}if (arr[i] < min){min = arr[i];}}int range = max - min + 1;int* tmp = (int*)malloc(sizeof(int) * range);assert(tmp);memset(tmp, 0, sizeof(int) * range);for (int i = 0; i < n; i++){tmp[arr[i] - min]++;}int index = 0;for (int i = 0; i < range; i++){while (tmp[i]--){arr[index++] = i + min;}}							
}			

2.2:思路

计数排序的思想:先找到数组中的最大值和最小值,定义 range (range = max - min +1) 个大小空间的数组 ,为了是大数据能够更好的存放进数组,同时又不会浪费太多空间。

我们需要把原数组的数据 - min 存放进新数组相应位置处,原数组中每重复一个数字,新数组相应位置处的大小就+1,这就意味着计数排序要求原数组中,各个数据相差不是很大,否则会造成空间的浪费。

计数排序的巧妙在于,我们不用去比较各个元素然后排序,而是统计原数组中,每个元素出现的次数,并将该元素 - min (这个差对应新数组下标)存入到数组中,如果两个值相差不大 ,得到的差会对应于新数组的一个下标,即新数组中,统计的是该元素在原数组中出现的次数,最后我们再进行排序时,以新数组元素个数为条件出发,同时新数组下标+min 又可以得到原数组中的元素,从而实现排列。

2.3:代码分析

下列代码我们开辟了一块 range 大小的空间区域

	int max, min;max = min = arr[0];for (int i = 0; i < n; i++){if (arr[i] > max){max = arr[i];}if (arr[i] < min){min = arr[i];}}int range = max - min + 1;int* tmp = (int*)malloc(sizeof(int) * range);assert(tmp);memset(tmp, 0, sizeof(int) * range);

下列代码统计了原数组中,每个元素出现的次数,并存入到临时数组中

for (int i = 0; i < n; i++)
{tmp[arr[i] - min]++;
}

最后对临时数组进行访问,以临时数组中元素个数为条件,临时数组下标地址 + min 得到原数组的值:

int index = 0;
for (int i = 0; i < range; i++)
{while (tmp[i]--){arr[index++] = i + min;}
}		

2.4:图示上述过程:

初始时如图所示:

当进入第二个for循环时,开始统计原数组中的元素个数,当循环结束时,得到如下图所示变量关系:

当进入第三个for循环时,遍历tmp中各个元素,同时内层以各个元素的值作为条件,循环的将 i + min (原数组对应值) 赋值给原数组中,当外层 for 循环完成对数组的遍历时,此时原数组也得到了正确的顺序。

2.5:计数排序的特性

适用范围:数据范围比较集中时,效率很高

时间复杂度:O(N+range)

空间复杂度:O(range)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com