原理:
逻辑回归是一种用于分类问题的统计方法,尤其适用于二分类。它通过Sigmoid函数将线性回归的输出映射到[0,1]区间,表示样本属于某一类的概率。模型使用最大似然估计进行参数优化,常用梯度下降法求解。虽然名为“回归”,但主要用于分类任务。
案例:
下面,我们利用逻辑回归的思想,实现一个预测拖欠款的案例:
1、导入相关库:
import pandas as pd
import matplotlib.pyplot as plt
from pylab import mpl
import numpy as np
2、读取数据、绘制混淆矩阵:
data=pd.read_csv('data.csv')
#绘制可视化混淆矩阵
def cm_plot(y,yp):from sklearn.metrics import confusion_matriximport matplotlib.pyplot as pltcm = confusion_matrix(y,yp)plt.matshow(cm,cmap=plt.cm.Blues)plt.colorbar()for x in range(len(cm)):for y in range(len(cm)):plt.annotate(cm[x,y],xy=(y,x),horizontalalignment='center',verticalalignment='center')plt.ylabel('True label')plt.xlabel('Predicted label')return plt
3、数据标准化:
scaler = StandardScaler()
data['当前工作年限'] = scaler.fit_transform(data[['当前工作年限']])
data['家庭收入'] = scaler.fit_transform(data[['家庭收入']])
data['债务占收入比例'] = scaler.fit_transform(data[['债务占收入比例']])
data['其他负债'] = scaler.fit_transform(data[['其他负债']])
data['当前居住年限'] = scaler.fit_transform(data[['当前居住年限']])
data['年龄'] = scaler.fit_transform(data[['年龄']])# data = data.drop(['年龄'], axis=1) # 删除无用列
# data = data.drop(['当前居住年限'], axis=1)
4、划分数据集:
from sklearn.model_selection import train_test_split# 划分训练集和测试集
X = data.drop('还款拖欠情况', axis=1)
y = data.还款拖欠情况
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=100)
5、过采样扩充数据,并再次划分:
from imblearn.over_sampling import SMOTEoversampler =SMOTE(random_state=0)
os_x_train,os_y_train=oversampler.fit_resample(x_train,y_train)new_x_train,new_x_test,new_y_train,new_y_test =\train_test_split(os_x_train,os_y_train,test_size = 0.3,random_state = 0)
6、获取最优逻辑回归门限值C
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_scorescores=[]
c_param_range=[0.1,0.01,1,10,100]
for i in c_param_range:lr=LogisticRegression(C=i,penalty='l2',solver='lbfgs',max_iter=1000)score=cross_val_score(lr,new_x_train,new_y_train,cv=8,scoring='recall')score_mean=sum(score)/len(score)scores.append(score_mean)print(score_mean)best_c=c_param_range[np.argmax(scores)]
注意:score
是一个包含 8 个召回率值的数组
使用 cross_val_score
对模型进行交叉验证
7、建立并训练模型:
lr=LogisticRegression(C=best_c,penalty='l2',max_iter=1000)
lr.fit(os_x_train,os_y_train)
8、模型测试:
from sklearn import metricstrain_predicted=lr.predict(new_x_train)
print(metrics.classification_report(new_y_train,train_predicted))
# cm_plot(new_y_train,train_predicted).show()test_predicted=lr.predict(new_x_test)
print(metrics.classification_report(new_y_test,test_predicted))
# cm_plot(new_y_test,test_predicted).show()test1_predicted=lr.predict(x_test)
print(metrics.classification_report(y_test,test1_predicted))
# cm_plot(y_test,test1_predicted).show()
运行结果如下:
总结:
在数据集的划分过程中,我们要注意训练集与测试集的划分,避免模型出现欠拟合与过拟合的状况
注:以上全为个人观点,若有错误,欢迎指正