本文来自社区投稿,作者:Tim
MLC-LLM 是一个机器学习编译器和高性能大型语言模型部署引擎。该项目的使命是让每个人都能在自己的平台上开发、优化和部署 AI 模型。InternLM 2.5 是上海人工智能实验室发布的新一代大规模语言模型,相比于之前的版本,InternLM 2.5支持百万长文,推理能力开源领先。本文将带大家手把手使用 MLC-LLM 将 InternLM2.5-1.8B-Chat部署到安卓手机上。
https://github.com/InternLM/InternLM
首先我们来看一下最终的效果~
1 环境准备
1.1 安装 rust
可参考 Other Installation Methods - Rust Forge
此处使用了国内的镜像,如下列命令,当出现选项时选择 Enter 安装。
export RUSTUP_DIST_SERVER=https://mirrors.ustc.edu.cn/rust-static
export RUSTUP_UPDATE_ROOT=https://mirrors.ustc.edu.cn/rust-static/rustup
curl --proto '=https' --tlsv1.2 -sSf https://mirrors.ustc.edu.cn/misc/rustup-install.sh | sh
1.2 安装 Android Studio
可参考 https://developer.android.com/studio
mkdir -p /root/android && cd /root/android
wget https://redirector.gvt1.com/edgedl/android/studio/ide-zips/2024.1.1.12/android-studio-2024.1.1.12-linux.tar.gz
tar -xvzf android-studio-2024.1.1.12-linux.tar.gz
cd android-studio
wget https://dl.google.com/android/repository/commandlinetools-linux-11076708_latest.zip?hl=zh-cn
unzip commandlinetools-linux-11076708_latest.zip\?hl\=zh-cn
export JAVA_HOME=/root/Downloads/android-studio/jbr
cmdline-tools/bin/sdkmanager "ndk;27.0.12077973" "cmake;3.22.1" "platforms;android-34" "build-tools;33.0.1" --sdk_root='sdk'
2 转换模型
2.1 安装 mlc-llm
可参考 https://llm.mlc.ai/docs/install/mlc_llm.html (如果下载很慢可以取消重新运行一下,或者本地下载了之后拷过去)
conda create --name mlc-prebuilt python=3.11
conda activate mlc-prebuilt
conda install -c conda-forge git-lfs
pip install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 transformers sentencepiece protobuf
wget https://github.com/mlc-ai/package/releases/download/v0.9.dev0/mlc_llm_nightly_cu122-0.1.dev1445-cp311-cp311-manylinux_2_28_x86_64.whl
wget https://github.com/mlc-ai/package/releases/download/v0.9.dev0/mlc_ai_nightly_cu122-0.15.dev404-cp311-cp311-manylinux_2_28_x86_64.whl
pip install mlc_ai_nightly_cu122-0.15.dev404-cp311-cp311-manylinux_2_28_x86_64.whl
pip install mlc_llm_nightly_cu122-0.1.dev1445-cp311-cp311-manylinux_2_28_x86_64.whl
测试如下输出说明安装正确
python -c "import mlc_llm; print(mlc_llm)"
克隆项目
git clone https://github.com/mlc-ai/mlc-llm.git
cd mlc-llm
git submodule update --init --recursive
2.2 转换参数
使用 mlc_llm
的 convert_weight
对模型参数进行转换和量化,转换后的参数可以跨平台使用
cd android/MLCChat
export TVM_SOURCE_DIR=/root/android/mlc-llm/3rdparty/tvm
export MLC_LLM_SOURCE_DIR=/root/android/mlc-llm
mlc_llm convert_weight /root/models/internlm2_5-1_8b-chat/ \--quantization q4f16_1 \-o dist/internlm2_5-1_8b-chat-q4f16_1-MLC
2.3 生成配置
使用 mlc_llm
的 gen_config
生成 mlc-chat-config.json
并处理 tokenizer
出现提示时输入 y
mlc_llm gen_config /root/models/internlm2_5-1_8b-chat/ \--quantization q4f16_1 --conv-template chatml \-o dist/internlm2_5-1_8b-chat-q4f16_1-MLC
Do you wish to run the custom code? [y/N] y
2.4 上传到 HuggingFace
上传这一步需要能访问 HuggingFace,可能需要部署代理,如果没有代理可以直接在接下来的配置中使用此链接https://huggingface.co/timws/internlm2_5-1_8b-chat-q4f16_1-MLC 中的模型(和文档 https://llm.mlc.ai/docs/deploy/android.html#android-sdk 中的转换方法一样)
2.5 (可选) 测试转换的模型
在打包之前可以测试模型效果,需要编译成二进制文件,已成功在个人电脑上运行测试代码。
mlc_llm compile ./dist/internlm2_5-1_8b-chat-q4f16_1-MLC/mlc-chat-config.json \--device cuda -o dist/libs/internlm2_5-1_8b-chat-q4f16_1-MLC-cuda.so
测试编译的模型是否符合预期,手机端运行的效果和测试效果接近
from mlc_llm import MLCEngine# Create engine
engine = MLCEngine(model="./dist/internlm2_5-1_8b-chat-q4f16_1-MLC", model_lib="./dist/libs/internlm2_5-1_8b-chat-q4f16_1-MLC-cuda.so")# Run chat completion in OpenAI API.
print(engine)
for response in engine.chat.completions.create(messages=[{"role": "user", "content": "你是谁?"}],stream=True
):for choice in response.choices:print(choice.delta.content, end="", flush=True)
print("\n")
engine.terminate()
3 打包运行
3.1 修改配置文件
修改 mlc-package-config.json
,参考如下
{"device": "android","model_list": [{"model": "HF://timws/internlm2_5-1_8b-chat-q4f16_1-MLC","estimated_vram_bytes": 3980990464,"model_id": "internlm2_5-1_8b-chat-q4f16_1-MLC"},{"model": "HF://mlc-ai/gemma-2b-it-q4f16_1-MLC","model_id": "gemma-2b-q4f16_1-MLC","estimated_vram_bytes": 3980990464}]
}
3.2 运行打包命令
这一步需要能访问 HuggingFace,可能需要部署代理
mlc_llm package
3.3 创建签名
cd /root/android/mlc-llm/android/MLCChat
/root/android/android-studio/jbr/bin/keytool -genkey -v -keystore my-release-key.jks -keyalg RSA -keysize 2048 -validity 10000
Enter keystore password:
Re-enter new password:
What is your first and last name?[Unknown]: Any
What is the name of your organizational unit?[Unknown]: Any
What is the name of your organization?[Unknown]: Any
What is the name of your City or Locality?[Unknown]: Any
What is the name of your State or Province?[Unknown]: Any
What is the two-letter country code for this unit?[Unknown]: CN
Is CN=Any, OU=Any, O=Any, L=Any, ST=Any, C=CN correct?[no]: yes
Generating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA) with a validity of 10,000 daysfor: CN=Any, OU=Any, O=Any, L=Any, ST=Any, C=CN
[Storing my-release-key.jks]
3.4 修改 gradle 配置
如果是本地可以 WIFI 或 USB 调试,不用签名;在服务器构建需要签名,修改 app/build.gradle
为如下内容,主要是增加了签名部分,注意确认签名文件的位置。
plugins {id 'com.android.application'id 'org.jetbrains.kotlin.android'
}
android {namespace 'ai.mlc.mlcchat'compileSdk 34defaultConfig {applicationId "ai.mlc.mlcchat"minSdk 26targetSdk 33versionCode 1versionName "1.0"testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"vectorDrawables {useSupportLibrary true}}compileOptions {sourceCompatibility JavaVersion.VERSION_1_8targetCompatibility JavaVersion.VERSION_1_8}kotlinOptions {jvmTarget = '1.8'}buildFeatures {compose true}composeOptions {kotlinCompilerExtensionVersion '1.4.3'}packagingOptions {resources {excludes += '/META-INF/{AL2.0,LGPL2.1}'}}signingConfigs {release {storeFile file("/root/android/mlc-llm/android/MLCChat/my-release-key.jks")storePassword "123456"keyAlias "mykey"keyPassword "123456"}}buildTypes {release {minifyEnabled falseproguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'signingConfig signingConfigs.release}}
}
dependencies {implementation project(":mlc4j")implementation 'androidx.core:core-ktx:1.10.1'implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.6.1'implementation 'androidx.activity:activity-compose:1.7.1'implementation platform('androidx.compose:compose-bom:2022.10.00')implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.6.1'implementation 'androidx.compose.ui:ui'implementation 'androidx.compose.ui:ui-graphics'implementation 'androidx.compose.ui:ui-tooling-preview'implementation 'androidx.compose.material3:material3:1.1.0'implementation 'androidx.compose.material:material-icons-extended'implementation 'androidx.appcompat:appcompat:1.6.1'implementation 'androidx.navigation:navigation-compose:2.5.3'implementation 'com.google.code.gson:gson:2.10.1'implementation fileTree(dir: 'src/main/libs', include: ['
*.aar', '*
.jar'], exclude: [])testImplementation 'junit:junit:4.13.2'androidTestImplementation 'androidx.test.ext:junit:1.1.5'androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.1'androidTestImplementation platform('androidx.compose:compose-bom:2022.10.00')androidTestImplementation 'androidx.compose.ui:ui-test-junit4'debugImplementation 'androidx.compose.ui:ui-tooling'debugImplementation 'androidx.compose.ui:ui-test-manifest'
}
3.5 命令行编译
运行编译命令,完成后在 app/build/outputs/apk/release
生成 app-release.apk
安装包,下载到手机上运行,运行 App 需要能访问 HuggingFace 下载模型(参考文档 https://llm.mlc.ai/docs/deploy/android.html#android-sdk 中的 bundle 方法,需要 ADB 刷入模型数据)
./gradlew assembleRelease
3.6 运行体验
-
运行 App 需要能访问 HuggingFce 下载模型
-
需要大概 4G 运行内存
-
如果运行闪退,很可能是下载不完整可以删除重新下载