欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 科技 > 名人名企 > Python鲁汶意外莱顿复杂图拓扑分解算法

Python鲁汶意外莱顿复杂图拓扑分解算法

2024/11/30 8:59:08 来源:https://blog.csdn.net/jiyotin/article/details/140667659  浏览:    关键词:Python鲁汶意外莱顿复杂图拓扑分解算法

🎯要点

🎯算法池化和最佳分区搜索:🖊网格搜索 | 🖊发现算法池 | 🖊返回指定图的最佳划分 | 🖊返回指定图的最佳分区 | 🎯适应度和聚类比较功能:🖊图的划分 | 🖊节点度 | 🖊给定算法检测到社群总数 | 🖊图密度 | 🖊社群顶点的度数之和 | 🖊解之间的预期一致 | 🖊联合熵 | 🖊平均内部度、所有可能的节点对的平均路径长度 | 🖊节点指向社群外的边平均比例 | 🖊现有边距离社群比例 | 社群内部密度 | 🖊切割比率的标准化变体 | 🖊边超几何分布随机出现的统计方法 | 🖊兰德指数预测聚类之间的相似性度量 | 分区之间最佳匹配的平均 F1 分数 | 归一化互信息

📜图算法用例

📜Python群体趋向性潜关联有向无向多图层算法

📜Python和MATLAB网络尺度结构和幂律度大型图生成式模型算法

📜MATLAB和Python零模型社会生物生成式结构化图

📜Python莫兰生死抑制放大进化图

📜Python种群邻接矩阵彗星风筝进化图算法

📜Python和C++骨髓细胞进化解析数学模型

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python和MATLAB异构网络算法

异构信息网络是一种网络结构,其对象可以假设不同的对象类型,对象之间的链接可以表示对象之间的不同类型的关系。此网无处不在,用于对许多不同类型的现实世界数据进行建模。例如,社交软件开放图将用户、帖子、事件和页面建模为四种不同类型的对象。用户可以发布帖子、参加活动或喜欢页面,这说明了将用户对象与帖子相关联的三种不同类型的连接。

此网络数据分析一直是一个活跃的研究领域。作为机器学习和数据挖掘的一项基本任务,聚类分析在此网络中找到了有趣的应用。例如,根据社交软件用户的兴趣对其进行聚类,可以实现有效的目标营销和病毒式营销。

谱聚类将聚类转化为图分割问题,该问题优化衡量分割质量的某个标准,例如正则化切割。通常,给定一组对象 X = { x 1 , x 2 , … , x n } X=\left\{x_1, x_2, \ldots, x_n\right\} X={x1,x2,,xn},标准谱聚类方法首先构造一个无向图 G = ( X , S ) G=(X, S) G=(X,S),其中 X X X 表示顶点集, S S S 是一个矩阵, S i j S_{i j} Sij 度量对象 x i x_i xi x j x_j xj 之间的相似性。然后,计算拉普拉斯矩阵 L S L_S LS,在此基础上执行特征分解以获得与 k k k 个最小特征值相对应的 k k k 个特征向量,其中 k k k 是所需的聚类数量。这些特征向量被用作对象的新特征空间。最后,应用后处理步骤,例如 k k k 均值和光谱旋转将对象划分为 k k k 个聚类。

异构信息网络:

B1
B2
B3
R1
R2
R3
R4
U1
U2
K1
K2

T = { T 1 , … , T m } T =\left\{T_1, \ldots, T_m\right\} T={T1,,Tm} 为一组 m m m 对象类型。对于每种类型 T i T_i Ti,令 X i X _i Xi 为类型 T i T_i Ti 的对象集。 异构信息网络是一个图 G = ( V , E ) G =( V , E ) G=(V,E),其中 V = ⋃ i = 1 m X i V =\bigcup_{i=1}^m X _i V=i=1mXi 是一组节点, E E E 是一组链接,每个链接代表一个二进制 V V V 中两个对象之间的关系。

它的网络模式:

在这里插入图片描述

网络模式是异构信息网络 G = ( V , E ) G =( V , E ) G=(V,E) 的元模板。令 (1) ϕ : V → T \phi: V \rightarrow T ϕ:VT 为对象类型映射,将 V V V 中的对象映射为其类型,(2) ψ : E → R \psi: E \rightarrow R ψ:ER 为链接关系映射将 E E E 中的链接映射到一组关系 R R R 中的关系。异构信息网络 G G G 的网络模式用 T G = ( T , R ) T_{ G }=( T , R ) TG=(T,R) 表示,显示了不同类型的对象如何通过 R R R 中的关系进行关联。使用示意图来表示 T G T_{G} TG,其中 T T T R R R分别为节点集和边集。具体来说,示意图中存在一条边 ( T i , T j ) \left(T_i, T_j\right) (Ti,Tj) ,前提是 R R R 中存在将 T i T_i Ti 类型的对象与 T j T_j Tj 类型的对象相关联的关系。

算法

谱聚类的关键步骤是构建高质量的相似度矩阵 S S S。对于异构信息网络,元路径已被有效地用于测量对象相似性。例如,给定元路径 P P P,PathSim测量两个对象 x u x_u xu x v x_v xv 之间的相似度。 P P P 通过计算连接两个对象的 P P P 的路径实例的数量。具体来说,我们有,
S P ( x u , x v ) = 2 × ∣ { p x u ⇝ x v : p x u ⇝ x v ⊢ P } ∣ ∣ { p x u ⇝ x u : p x u → x u ⊢ P } ∣ + ∣ { p x v ⇝ x v : p x v ⇝ x v ⊢ P } ∣ . S_{ P }\left(x_u, x_v\right)=\frac{2 \times\left|\left\{p_{x_u \rightsquigarrow x_v}: p_{x_u \rightsquigarrow x_v} \vdash P \right\}\right|}{\left|\left\{p_{x_u \rightsquigarrow x_u}: p_{x_u \rightarrow x_u} \vdash P \right\}\right|+\left|\left\{p_{x_v \rightsquigarrow x_v}: p_{x_v \rightsquigarrow x_v} \vdash P \right\}\right|} . SP(xu,xv)={pxuxu:pxuxuP}+{pxvxv:pxvxvP}2×{pxuxv:pxuxvP}.
给定一组元路径 P S P S PS,每个元路径 P i ∈ P S P _i \in P S PiPS 根据上式导出相似性矩阵 S P i S_{ P _i} SPi。我们构造一个矩阵 W W W 作为以下各项的加权和:矩阵:
W = ∑ i = 1 ∣ P S ∣ λ i S P i . W=\sum_{i=1}^{| P S |} \lambda_i S_{ P _i} . W=i=1PSλiSPi.

优化

由于约束 rank ⁡ ( L S ) = n − k \operatorname{rank}\left(L_S\right)=n-k rank(LS)=nk,优化问题是非凸的。因此很难直接优化问题。我们将原问题转化为:
min ⁡ ∥ S − ∑ i = 1 ∣ P S ∣ λ i S P i ∥ F 2 + α ∥ S ∥ F 2 + β ∥ λ ∥ 2 2 + 2 γ ∑ i = 1 k σ i ( L S ) , s.t.  ∑ j = 1 n S i j = 1 , S i j ≥ 0 , ∑ i = 1 ∣ P S ∣ λ i = 1 , λ i ≥ 0 , \begin{aligned} & \min \left\|S-\sum_{i=1}^{| P S |} \lambda_i S_{ P _i}\right\|_F^2+\alpha\|S\|_F^2+\beta\| \lambda \|_2^2+2 \gamma \sum_{i=1}^k \sigma_i\left(L_S\right), \\ & \text { s.t. } \sum_{j=1}^n S_{i j}=1, S_{i j} \geq 0, \sum_{i=1}^{| P S |} \lambda_i=1, \lambda_i \geq 0, \end{aligned} min Si=1PSλiSPi F2+αSF2+βλ22+2γi=1kσi(LS), s.t. j=1nSij=1,Sij0,i=1PSλi=1,λi0,
其中 σ i ( L S ) \sigma_i\left(L_S\right) σi(LS)表示 L S L_S LS的第 i i i个最小特征值。由于 L S L_S LS是半定的, σ i ( L S ) ≥ 0 \sigma_i\left(L_S\right)\geq 0 σi(LS)0。通过设置较大的 γ \gamma γ 值,我们将 ∑ i = 1 k σ i ( L S ) \sum_{i=1}^k \sigma_i\left(L_S\right) i=1kσi(LS) 强制为零,以保证 rank ⁡ ( L S ) ) = n − k \operatorname{rank}\left(L_S\right) )=n-k rank(LS))=nk。根据凯-范定理,我们有,
∑ i = 1 k σ i ( L S ) = min ⁡ F ∈ R n × k , F T F = I tr ⁡ ( F T L S F ) \sum_{i=1}^k \sigma_i\left(L_S\right)=\min _{F \in R ^{n \times k}, F^T F=I} \operatorname{tr}\left(F^T L_S F\right) i=1kσi(LS)=FRn×k,FTF=Imintr(FTLSF)
其中 tr ⁡ ( ⋅ ) \operatorname{tr}(\cdot) tr() 是跟踪运算符。因此优化问题等价于:
min ⁡ ∥ S − ∑ i = 1 ∣ P S ∣ λ i S P i ∥ F 2 + α ∥ S ∥ F 2 + β ∥ λ ∥ 2 2 + 2 γ tr ⁡ ( F T L S F ) , s.t.  ∑ j = 1 n S i j = 1 , S i j ≥ 0 , ∑ i = 1 ∣ P S ∣ λ i = 1 , λ i ≥ 0 , F ∈ R n × k , F T F = I , \begin{aligned} & \min \left\|S-\sum_{i=1}^{| P S |} \lambda_i S_{ P _i}\right\|_F^2+\alpha\|S\|_F^2+\beta\| \lambda \|_2^2+2 \gamma \operatorname{tr}\left(F^T L_S F\right), \\ & \text { s.t. } \sum_{j=1}^n S_{i j}=1, S_{i j} \geq 0, \sum_{i=1}^{| P S |} \lambda_i=1, \lambda_i \geq 0, F \in R ^{n \times k}, F^T F=I, \end{aligned} min Si=1PSλiSPi F2+αSF2+βλ22+2γtr(FTLSF), s.t. j=1nSij=1,Sij0,i=1PSλi=1,λi0,FRn×k,FTF=I,
Python伪代码实现算法:

from sklearn.cluster import KMeans
import numpy as np
from scipy.optimize import minimizeclass alg:def __init__(self, similarity_matrices, num_clusters, random_seed=0):self.num_clusters = num_clustersself.random_seed = random_seedself.num_nodes = Noneself.similarity_matrices = []self.metapath_index = {}self.alpha = Noneself.beta = Noneself.gamma = Nonefor index, (metapath, matrix) in enumerate(similarity_matrices.items()):if self.num_nodes is None:self.num_nodes = matrix.shape[0]if matrix.shape != (self.num_nodes, self.num_nodes):raise ValueError('Invalid shape of similarity matrix.')row_normalized_matrix = matrix/matrix.sum(axis=1, keepdims=True)self.similarity_matrices.append(row_normalized_matrix)self.metapath_index[metapath] = indexself.similarity_matrices = np.array(self.similarity_matrices)self.num_metapaths = len(similarity_matrices)def run(self, verbose=False, cluster_using='similarity'):if cluster_using not in ['similarity', 'laplacian']:raise ValueError('Invalid option for parameter \'cluster_using\'.')similarity_matrix, metapath_weights = self.optimize(verbose=verbose)if cluster_using == 'similarity':labels = self.cluster(similarity_matrix)elif cluster_using == 'laplacian':laplacian = normalized_laplacian(similarity_matrix)labels = self.cluster(eigenvectors(laplacian, num=self.num_clusters))metapath_weights_dict = {metapath: metapath_weights[index] for metapath, index in self.metapath_index.items()}return labels, similarity_matrix, metapath_weights_dictdef cluster(self, feature_matrix):return KMeans(self.num_clusters, n_init=10, random_state=self.random_seed).fit_predict(feature_matrix)def optimize(self, num_iterations=20, alpha=0.5, beta=10, gamma=0.01, verbose=False):self.alpha = alphaself.beta = betaself.gamma = gammalambdas = np.ones(self.num_metapaths)/self.num_metapathsW = np.tensordot(lambdas, self.similarity_matrices, axes=[[0], [0]])S = Wfor iteration in range(num_iterations):if verbose:loss = np.trace(np.matmul((S - W).T, (S - W))) loss += self.alpha * np.trace(np.matmul(S.T, S))loss += self.beta * np.dot(lambdas, lambdas)loss += self.gamma * np.sum(eigenvalues(normalized_laplacian(S), num=self.num_clusters))print('Iteration %d: Loss = %0.3f' % (iteration, loss))F = self.optimize_F(S)S = self.optimize_S(W, F)lambdas = self.optimize_lambdas(S, lambdas)W = np.tensordot(lambdas, self.similarity_matrices, axes=[[0], [0]])return S, lambdasdef optimize_F(self, S):LS = normalized_laplacian(S)    return eigenvectors(LS, num=self.num_clusters)def optimize_S(self, W, F):Q = distance_matrix(F, metric='euclidean')P = (2*W - self.gamma*Q)/(2 + 2*self.alpha)S = np.zeros((self.num_nodes, self.num_nodes)) for index in range(S.shape[0]):S[index] = best_simplex_projection(P[index])return Sdef optimize_lambdas(self, S, init_lambdas):def objective(lambdas):W = np.tensordot(lambdas, self.similarity_matrices, axes=[[0], [0]])value = np.trace(np.matmul(W.T, W))value -= 2 * np.trace(np.matmul(S.T, W))value += self.beta * np.dot(lambdas, lambdas)return valuedef constraints():def sum_one(lambdas):return np.sum(lambdas) - 1return  {'type': 'eq','fun': sum_one,}def bounds(init_lambdas):return [(0, 1) for init_lambda in init_lambdas]return minimize(objective, init_lambdas, method='SLSQP', constraints=constraints(), bounds=bounds(init_lambdas)).x

MATLAB伪代码算法实现:

function [y, S, evs, A] = alg(mp_matrix, c, true_cluster)NITER = 20;
zr = 10e-11;alpha = 0.5; 
beta = 10; 
gamma = 0.01; P = size(mp_matrix,1);
n = size(mp_matrix,2);
lambda = ones(P,1)./P;eps = 1e-10;
A0 = zeros(n,n);
for p = 1:PA0 = A0 + lambda(p) * squeeze(mp_matrix(p,:,:));
end;A0 = A0-diag(diag(A0));
A10 = (A0+A0')/2;
D10 = diag(sum(A10));
L0 = D10 - A10;[F0, ~, evs]=eig1(L0, n, 0);
F = F0(:,1:c);
[pred] = postprocess(F,c,true_cluster);for iter = 1:NITERdist = L2_distance_1(F',F');S = zeros(n);for i=1:na0 = A0(i,:);idxa0 = 1:n;ai = a0(idxa0);di = dist(i,idxa0);ad = (ai-0.5*gamma*di)/(1+alpha); S(i,idxa0) = EProjSimplex_new(ad);end;A = S;A = (A+A')/2;D = diag(sum(A));L = D-A;F_old = F;[F, ~, ev]=eig1(L, c, 0);[pred] = postprocess(F,c,true_cluster);evs(:,iter+1) = ev;fn1 = sum(ev(1:c));fn2 = sum(ev(1:c+1));lambda_old = lambda;if fn1 > zrgamma = 2*gamma;lambda =  optimizeLambda(mp_matrix, S, beta); % optimize lambdaelseif fn2 < zrgamma = gamma/2;  F = F_old; lambda = lambda_old;elsebreak;end;A0 = zeros(n,n);for p = 1:PA0 = A0 + lambda(p) * squeeze(mp_matrix(p,:,:));end;end;[clusternum, y]=graphconncomp(sparse(A)); y = y';
nmi = calculateNMI(y,true_cluster);
purity = eval_acc_purity(true_cluster,y);
ri = eval_rand(true_cluster,y);fprintf('Final NMI is %f\n',nmi);
fprintf('Final purity is %f\n',purity);
fprintf('Final rand is %f\n',ri);if clusternum ~= csprintf('Can not find the correct cluster number: %d', c)
end;

👉参阅、更新:计算思维 | 亚图跨际