欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 科技 > 能源 > BO-RBF多变量时间序列 | Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测

BO-RBF多变量时间序列 | Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测

2024/11/30 12:39:05 来源:https://blog.csdn.net/kjm13182345320/article/details/141097015  浏览:    关键词:BO-RBF多变量时间序列 | Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测

BO-RBF多变量时间序列 | Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测

目录

    • BO-RBF多变量时间序列 | Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

BO-RBF多变量时间序列 | Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测

程序平台:要求Matlab2023版以上

功能:
1、多变量特征输入,单序列变量输出。
2、提供MAPE、RMSE、MAE等计算结果展示。

适用领域:
风速预测、光伏功率预测、发电功率预测、碳价预测,交通流预测,等多种预测类应用。

使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com