欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 文旅 > 旅游 > 【解析几何笔记】8.向量的投影与内积

【解析几何笔记】8.向量的投影与内积

2025/2/23 0:48:33 来源:https://blog.csdn.net/qq_30204431/article/details/141526930  浏览:    关键词:【解析几何笔记】8.向量的投影与内积

8. 向量的投影与内积

复习前面的知识:,若BCE三点共线,则
A E ⃗ = ( 1 − s ) A B ⃗ + s A C ⃗ , ( B , C , E ) = μ ⇒ s = μ 1 + μ , 1 − s = 1 1 + μ \vec{AE}=(1-s)\vec{AB}+s\vec{AC},(B,C,E)=\mu\Rightarrow s=\frac{\mu}{1+\mu},1-s=\frac{1}{1+\mu} AE =(1s)AB +sAC ,(B,C,E)=μs=1+μμ,1s=1+μ1

Ceva定理的前提条件是E F D是三角形内点,假设E不是三角形内点

8.1 向量的投影

  • 给定一个非零向量 e \pmb{e} e α \pmb{\alpha} α可分解为 α 1 + α 2 \pmb{\alpha}_{1}+\pmb{\alpha}_{2} α1+α2使得 α 1 / / e , α 2 ⊥ e \pmb{\alpha}_{1}//\pmb{e},\pmb{\alpha}_{2}\bot\pmb{e} α1//e,α2e,且分解系数唯一。将 α 1 \pmb{\alpha}_{1} α1称为 α \pmb{\alpha} α关于向量 e \pmb{e} e内投影,记为 P e α P_{\pmb{e}}\pmb{\alpha} Peα α 2 \pmb{\alpha}_{2} α2称为 α \pmb{\alpha} α关于向量 e \pmb{e} e外投影,记为 P ˉ e α \bar{P}_{\pmb{e}}\pmb{\alpha} Pˉeα
  • P e α , P ˉ e α P_{\pmb{e}}\pmb{\alpha},\bar{P}_{\pmb{e}}\pmb{\alpha} Peα,Pˉeα e \pmb{e} e的大小无关,只与 e \pmb{e} e的方向有关。
  • 对两个非零向量 α \pmb{\alpha} α β \pmb{\beta} β的几何夹角记作 < α , β > <\pmb{\alpha},\pmb{\beta}> <α,β>,其中 ( 0 ∘ ≤ ( < α , β > ) < 18 0 ∘ (0^{\circ}\le(<\pmb{\alpha},\pmb{\beta}>)<180^{\circ} (0(<α,β>)<180
  • e 0 = e ∣ e ∣ \pmb{e}_{0}=\frac{\pmb{e}}{|\pmb{e}|} e0=ee,当 α ≠ 0 ⃗ , P e α = ∣ α ∣ cos ⁡ < α , β > e 0 \pmb{\alpha}\ne\vec{0},P_{\pmb{e}}\pmb{\alpha}=|\pmb{\alpha}|\cos<\pmb{\alpha},\pmb{\beta}>\pmb{e}_{0} α=0 ,Peα=αcos<α,β>e0
  • 【内投影的线性性】
    (1) P e ( α + β ) = P e α + P e β P_{\pmb{e}}(\pmb{\alpha}+\pmb{\beta})=P_{\pmb{e}}\pmb{\alpha}+P_{\pmb{e}}\pmb{\beta} Pe(α+β)=Peα+Peβ
    P ˉ e ( α + β ) = P ˉ e α + P e β \bar{P}_{\pmb{e}}(\pmb{\alpha}+\pmb{\beta})=\bar{P}_{\pmb{e}}\pmb{\alpha}+P_{\pmb{e}}\pmb{\beta} Pˉe(α+β)=Pˉeα+Peβ
    (2) P e ( λ α ) = λ P e α , λ ∈ R P_{\pmb{e}}(\lambda\pmb{\alpha})=\lambda P_{\pmb{e}}\pmb{\alpha},\lambda\in\mathbb{R} Pe(λα)=λPeα,λR
    P ˉ e ( λ α ) = λ P ˉ e α , λ ∈ R \bar{P}_{\pmb{e}}(\lambda\pmb{\alpha})=\lambda \bar{P}_{\pmb{e}}\pmb{\alpha},\lambda\in\mathbb{R} Pˉe(λα)=λPˉeα,λR
    【证】由内投影和外投影的定义可知, α = P e α + P ˉ e α \pmb{\alpha}=P_{\pmb{e}}\pmb{\alpha}+\bar{P}_{\pmb{e}}\pmb{\alpha} α=Peα+Pˉeα
    β = P e β + P ˉ e β \pmb{\beta}=P_{\pmb{e}}\pmb{\beta}+\bar{P}_{\pmb{e}}\pmb{\beta} β=Peβ+Pˉeβ
    α + β = P e α + P ˉ e α + P e β + P ˉ e β = ( P e α + P e β ) + ( P ˉ e α + P ˉ e β ) \pmb{\alpha}+\pmb{\beta}=P_{\pmb{e}}\pmb{\alpha}+\bar{P}_{\pmb{e}}\pmb{\alpha}+P_{\pmb{e}}\pmb{\beta}+\bar{P}_{\pmb{e}}\pmb{\beta}=(P_{\pmb{e}}\pmb{\alpha}+P_{\pmb{e}}\pmb{\beta})+(\bar{P}_{\pmb{e}}\pmb{\alpha}+\bar{P}_{\pmb{e}}\pmb{\beta}) α+β=Peα+Pˉeα+Peβ+Pˉeβ=(Peα+Peβ)+(Pˉeα+Pˉeβ)(分解成了一个垂直于 e \pmb{e} e的向量和一个平行于 e \pmb{e} e的向量相加)
    由投影分解的唯一性, P e ( α + β ) = P e α + P e β , P ˉ e ( α + β ) = P ˉ e α + P e β P_{\pmb{e}}(\pmb{\alpha}+\pmb{\beta})=P_{\pmb{e}}\pmb{\alpha}+P_{\pmb{e}}\pmb{\beta},\bar{P}_{\pmb{e}}(\pmb{\alpha}+\pmb{\beta})=\bar{P}_{\pmb{e}}\pmb{\alpha}+P_{\pmb{e}}\pmb{\beta} Pe(α+β)=Peα+Peβ,Pˉe(α+β)=Pˉeα+Peβ(对应项相等)

8.2 向量的内积

定义:有向量 α , β \pmb{\alpha},\pmb{\beta} α,β α ⋅ β = ∣ α ∣ ∣ β ∣ ⋅ cos ⁡ < α , β > \pmb{\alpha}\cdot\pmb{\beta}=|\pmb{\alpha}||\pmb{\beta}|\cdot\cos<\pmb{\alpha},\pmb{\beta}> αβ=α∣∣βcos<α,β>(结果是一个数)

  • α ⋅ β = 0 ⇔ α ⊥ β \pmb{\alpha}\cdot\pmb{\beta}=0\Leftrightarrow\pmb{\alpha}\bot\pmb{\beta} αβ=0αβ
  • α ⋅ α = ∣ α ∣ 2 ⇒ α ⋅ α \pmb{\alpha}\cdot\pmb{\alpha}=|\pmb{\alpha}|^{2}\Rightarrow\sqrt{\pmb{\alpha}\cdot\pmb{\alpha}} αα=α2αα
  • < α , β > = arccos ⁡ α ⋅ β ∣ α ∣ ∣ β ∣ <\pmb{\alpha},\pmb{\beta}>=\arccos\frac{\pmb{\alpha}\cdot\pmb{\beta}}{|\pmb{\alpha}||\pmb{\beta}|} <α,β>=arccosα∣∣βαβ
  • 【交换律】 α ⋅ β = β ⋅ α \pmb{\alpha}\cdot\pmb{\beta}=\pmb{\beta}\cdot\pmb{\alpha} αβ=βα
  • P β α = ∣ α ∣ cos ⁡ < α , β > β 0 = ∣ α ∣ cos ⁡ < α , β > β ∣ β ∣ ⇒ α ⋅ β = P β α β 0 ∣ β ∣ P_{\pmb{\beta}}\pmb{\alpha}=|\alpha|\cos<\pmb{\alpha},\pmb{\beta}>\pmb{\beta}_{0}=|\alpha|\cos<\pmb{\alpha},\pmb{\beta}>\frac{\pmb{\beta}}{|\pmb{\beta}|}\Rightarrow\pmb{\alpha}\cdot\pmb{\beta}=\frac{P_{\pmb{\beta}}\pmb{\alpha}}{\pmb{\beta}_{0}}|\pmb{\beta}| Pβα=αcos<α,β>β0=αcos<α,β>ββαβ=β0Pβαβ
  • 【定理1.3】内积具有双线性性
    (1) α ⋅ ( β + γ ) = α ⋅ β + α ⋅ γ \pmb{\alpha}\cdot(\pmb{\beta}+\pmb{\gamma})=\pmb{\alpha}\cdot\pmb{\beta}+\pmb{\alpha}\cdot\pmb{\gamma} α(β+γ)=αβ+αγ
    ( α + γ ) ⋅ β = α ⋅ β + γ ⋅ α (\pmb{\alpha}+\pmb{\gamma})\cdot\pmb{\beta}=\pmb{\alpha}\cdot\pmb{\beta}+\pmb{\gamma}\cdot\pmb{\alpha} (α+γ)β=αβ+γα
    (2) α ⋅ ( λ β ) = λ α β = ( λ α ) β \pmb{\alpha}\cdot(\lambda \pmb{\beta})=\lambda \pmb{\alpha}\pmb{\beta}=(\lambda\pmb{\alpha})\pmb{\beta} α(λβ)=λαβ=(λα)β

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词