欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 汽车 > 维修 > 数据倾斜优化:Hive性能提升的核心

数据倾斜优化:Hive性能提升的核心

2024/11/30 6:46:52 来源:https://blog.csdn.net/jankin6/article/details/140063992  浏览:    关键词:数据倾斜优化:Hive性能提升的核心

文章目录

    • 1. 定义
    • 2. 数据倾斜
      • 2.1 Map
      • 2.2 Join
      • 2.3 Reduce
    • 3. 写在最后

1. 定义

数据倾斜,也称为Data Skew,是在分布式计算环境中,由于数据分布不均匀导致某些任务处理的数据量远大于其他任务,从而形成性能瓶颈的现象。这种情况在Hive中尤为常见,可能发生在MapReduce作业的MapReduce阶段。

就好比像是在一个拥挤的超市里,所有的顾客都挤在一个收银台前排队结账,而其他的收银台却几乎没有人。这种情况在数据处理中也会发生,我们称之为“数据倾斜”。

想象一下,你有一个巨大的数据集,需要分成很多小块来同时处理(这就像超市开了很多个收银台)。理想情况下,每个收银台(或者说数据处理任务)应该处理差不多数量的数据块。但有时候,由于数据的某些特征或者我们的处理方式,大部分数据块都被送到了同一个任务那里,导致这个任务要处理的数据远远多于其他任务。

数据倾斜的常见表现包括:

  • 任务进度长时间维持在99%,少数Reduce任务未完成。
  • 单一Reduce的记录数与平均记录数差异极大。

2. 数据倾斜

MapReduce执行过程可以简化为以下几个主要步骤:
MapReduce

  1. 输入阶段(Input)

    • 数据从HDFS等存储系统中读取到MapReduce作业。
  2. 映射阶段(Map)

    • 输入数据被分割成多个chunks,每个chunk由一个Map任务处理。
    • Map任务对数据进行处理,输出中间key-value对。
  3. 洗牌阶段(Shuffle)

    • 中间key-value对根据key进行排序和分组。
    • 相同key的数据被发送到同一个Reducer。
  4. 排序阶段(Sort)

    • 数据在Shuffle过程中被排序,确保相同key的数据聚集在一起。
  5. 归约阶段(Reduce)

    • Reducer接收分组后的数据,对每个key对应的value进行归约处理,如求和、合并等。
  6. 输出阶段(Output)

    • 最终结果被写回到存储系统中,通常是HDFS。

Hadoop基础-07-MapReduce概述

2.1 Map

  1. 映射阶段(Map)
  • 输入数据被分割成多个chunks,每个chunk由一个Map任务处理。
  • Map任务对数据进行处理,输出中间key-value对。

Map阶段倾斜,或者说Map端数据倾斜,会遇到一些Map实例承担了不成比例的重担,而另一些Map实例却相对轻松。这种现象,我们称之为Map端的长尾效应,通常发生在以下情况:

  1. 小文件过多:当Hive处理的输入数据包含大量小文件时,每个小文件都可能被当作一个独立的任务处理。如果这些小文件数量极多,会导致生成大量的Map任务,每个任务处理的数据量很少,但任务的启动和初始化开销却相对较大,这会造成资源的浪费和处理效率的降低。

  2. 数据块大小不均:如果输入数据的块大小差异很大,比如一个大文件和许多小文件,这可能导致Map任务处理的数据量不均衡。大文件可能被分割成多个任务,而小文件则可能保持独立,导致某些Map任务处理的数据远多于其他任务。

  3. Map任务逻辑复杂:即使数据块大小相对均匀,如果Map端的计算逻辑非常复杂,比如Count Distinct时,如果某些Map实例读取到的特定值频繁出现,这将导致这些实例处理的数据量激增,形成长尾。这一种涉及到大量的条件判断或聚合操作,也可能导致某些Map任务执行时间过长。

  4. 数据源倾斜:输入数据在物理或逻辑上分布不均,造成某些Map任务分配到的数据远多于其他任务。

Map端倾斜的具体表现可能包括:

  • 部分Map任务进度缓慢,而其他任务已经完成。
  • 资源使用不均衡,某些节点或任务长时间占用大量资源。
  • 作业整体执行时间长,因为等待最慢的Map任务完成。

总而言之一句话:输入文件的大小不均匀。

解决Map端倾斜的方法可能包括:

  • 合并小文件:在作业执行前,通过set hive.merge.mapfiles=true合并小文件,减少Map任务的数量。
  • 调整Map任务数量:通过设置mapred.map.tasks参数来增加或减少Map任务的数量,以适应数据量和计算复杂性。
  • 优化输入格式:选择合适的输入格式,比如使用Hive的InputFormat来优化数据的读取。
  • 简化Map逻辑:优化Map端的代码逻辑,减少不必要的计算和数据移动。

2.2 Join

  1. 排序阶段(Sort)
  • 数据在Shuffle过程中被排序,确保相同key的数据聚集在一起。


Reduce阶段倾斜可能是由于Map阶段输出的键值对分布不均匀,或者Reduce任务逻辑处理复杂度高导致的。

Join阶段常见的数据倾斜场景及其解决方法:

  1. MapJoin优化小输入场景

    • 当我们进行Join操作时,如果其中一个表的数据量很小,可以把它整个加载到内存中。
  2. 处理空值导致的长尾

    • 如果Join操作中,由于某些空值字段导致大量数据集中在少数几个处理节点上,我们可以把这些空值替换为随机分配的值。
  3. 热点值导致的长尾处理

    • 当Join操作涉及两个大表,而且某个或某些特定的值(热点值)非常常见,导致数据处理时出现瓶颈,我们可以把这些热点值和非热点值分开处理。

以下是将Join倾斜的解决方案与出现场景整理成表格的形式:

倾斜场景问题描述解决方案具体方法
MapJoin适用Join操作中某路输入较小使用MapJoin避免倾斜将小表读入内存,在Map端完成Join操作,避免数据在Reduce端的不均匀分发。
空值导致长尾关联key出现大量空值将空值处理成随机值空值无法参与Join,转换为空值的随机分配,既不影响结果,也避免数据聚集。
热点值导致长尾Join输入较大且存在热点值热点值和非热点值分别处理识别热点key,将数据分为热点和非热点两部分,分别进行Join操作后合并结果。
  1. MapJoin优化小输入场景
   SET hive.auto.convert.join = true;SELECT /*+ MAPJOIN(small_table) */a.id,a.value,b.descriptionFROMlarge_table aJOINsmall_table bONa.key = b.key;
  1. 处理空值导致的长尾
SELECTCOALESCE(a.key, CONCAT('random_', CAST(RAND() * 1000 AS INT))) AS key,a.value,b.description
FROMlarge_table a
LEFT JOINanother_table b
ONCOALESCE(a.key, CONCAT('random_', CAST(RAND() * 1000 AS INT))) = b.key;
  1. 热点值导致的长尾处理
   -- 处理非热点值SELECTa.id,a.value,b.descriptionFROMlarge_table aJOINanother_large_table bONa.key = b.keyWHEREa.key NOT IN ('hot_value1', 'hot_value2');-- 处理热点值SELECTa.id,a.value,b.descriptionFROMlarge_table aJOINanother_large_table bONa.key = b.keyWHEREa.key IN ('hot_value1', 'hot_value2');

2.3 Reduce

  1. 归约阶段(Reduce)
  • Reducer接收分组后的数据,对每个key对应的value进行归约处理,如求和、合并等。

Reducer导致的倾斜情况有很多,一句话归纳就是:键值分布不均匀导致分区不均衡,从而引起数据倾斜。

  1. Map端数据膨胀

    • 场景:对同一表按不同维度进行Count Distinct操作,导致Map端数据膨胀,进而导致下游Join的Reduce阶段出现长尾。
    • 解决方法:提前在Map端进行部分聚合,减少传输的数据量。
  2. 键值分布不均

    • 场景:Map端直接做聚合时,键值分布不均,导致单个Reducer负载过重。
    • 解决方法:对键值添加随机前缀(盐值),均衡数据分布。
  3. 动态分区过多

    • 场景:动态分区数过多,造成小文件过多,引起Reduce端长尾。
    • 解决方法:控制动态分区数量,合并小文件。
  4. 多个Distinct操作

    • 场景:SQL中多个Distinct操作导致数据多次分发,数据膨胀,放大长尾现象。
    • 解决方法:合并多个Distinct操作,或优化查询逻辑以减少数据分发次数。

3. 写在最后

在数据处理倾斜的时候,我们需要采取多种策略来优化性能。从Map端到Reduce端,每个阶段的数据分布不均可能导致处理效率的严重下降,甚至造成作业执行时间的显著延长。
通过本文探讨的Map端数据膨胀、Reduce端键值分布不均、以及动态分区过多等典型场景,我们深入分析了每种情况的解决方案。在实际应用中,我们应该根据具体情况灵活调整,采取合适的优化策略,以提升Hive作业的整体性能和稳定性。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com