欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 汽车 > 时评 > 复合分位回归的统计推断

复合分位回归的统计推断

2025/4/4 22:35:24 来源:https://blog.csdn.net/qq_44638724/article/details/146868523  浏览:    关键词:复合分位回归的统计推断

定理:迭代式两阶段估计的渐近正态性证明

模型与符号约定

考虑地理加权部分线性分位数回归模型:
Q τ ( Y ∣ X , Z , U ) = X ⊤ β + Z ⊤ α ( U ) , Q_{\tau}(Y | X, Z, U) = X^\top \beta + Z^\top \alpha(U), Qτ(YX,Z,U)=Xβ+Zα(U),
其中:

  • U = ( u 1 , u 2 , u 3 , u 4 ) U = (u_1, u_2, u_3, u_4) U=(u1,u2,u3,u4) 为四维位置变量(经度、纬度、高度、时间),
  • α ( U ) \alpha(U) α(U) 通过局部线性分位数回归估计,
  • β \beta β 通过迭代式两阶段估计:交替更新非参数部分 α ( U ) \alpha(U) α(U) 和参数部分 β \beta β,直至收敛。

定义误差项:
ϵ = Y − X ⊤ β − Z ⊤ α ( U ) , P ( ϵ ≤ 0 ∣ X , Z , U ) = τ . \epsilon = Y - X^\top \beta - Z^\top \alpha(U), \quad P(\epsilon \leq 0 | X, Z, U) = \tau. ϵ=YXβZα(U),P(ϵ0∣X,Z,U)=τ.

假设条件

  1. 非参数光滑性
    α ( U ) ∈ C 2 ( D ) \alpha(U) \in C^2(\mathcal{D}) α(U)C2(D),且其二阶导数满足 ∥ ∂ 2 α ( U ) / ∂ U ∂ U ⊤ ∥ ≤ C \| \partial^2 \alpha(U)/\partial U \partial U^\top \| \leq C 2α(U)/UUC

  2. 设计正则性

    • E [ X X ⊤ ] E[XX^\top] E[XX] 正定,且协变量 X X X Z , U Z, U Z,U 满足正交性条件: E [ X ∣ Z , U ] = E [ X ] E[X | Z, U] = E[X] E[XZ,U]=E[X]
    • 四维位置变量 U U U 的联合密度 f ( U ) f(U) f(U) 在其支撑集上满足 0 < c 1 ≤ f ( U ) ≤ c 2 < ∞ 0 < c_1 \leq f(U) \leq c_2 < \infty 0<c1f(U)c2<
  3. 误差条件密度

    • ϵ = 0 \epsilon = 0 ϵ=0 处,条件密度 f ϵ ∣ X , Z , U ( 0 ) ≥ c > 0 f_{\epsilon | X, Z, U}(0) \geq c > 0 fϵX,Z,U(0)c>0
    • f ϵ ∣ X , Z , U ( 0 ) f_{\epsilon | X, Z, U}(0) fϵX,Z,U(0) 关于 ( X , Z , U ) (X, Z, U) (X,Z,U) 一致连续。
  4. 核函数与带宽

    • 使用乘积核函数 K h ( U ) = ∏ d = 1 4 1 h d K ( u d h d ) K_h(U) = \prod_{d=1}^4 \frac{1}{h_d} K\left( \frac{u_d}{h_d} \right) Kh(U)=d=14hd1K(hdud),其中 K ( ⋅ ) K(\cdot) K() 对称、紧支撑且满足 ∫ K ( u ) d u = 1 \int K(u) du = 1 K(u)du=1 ∫ u K ( u ) d u = 0 \int u K(u) du = 0 uK(u)du=0
    • 带宽选择满足 h d = o ( 1 ) h_d = o(1) hd=o(1) n ∏ d = 1 4 h d → ∞ n \prod_{d=1}^4 h_d \to \infty nd=14hd
  5. 迭代收敛性
    迭代序列 { β ^ ( m ) , α ^ ( m ) ( U ) } \{ \hat{\beta}^{(m)}, \hat{\alpha}^{(m)}(U) \} {β^(m),α^(m)(U)} 依概率收敛到真值 ( β , α ( U ) ) (\beta, \alpha(U)) (β,α(U)),且存在常数 C C C,使得:
    ∥ β ^ ( m ) − β ∥ ≤ C ( ∥ β ^ ( m − 1 ) − β ∥ + sup ⁡ U ∥ α ^ ( m − 1 ) ( U ) − α ( U ) ∥ ) . \| \hat{\beta}^{(m)} - \beta \| \leq C \left( \| \hat{\beta}^{(m-1)} - \beta \| + \sup_{U} \| \hat{\alpha}^{(m-1)}(U) - \alpha(U) \| \right). β^(m)βC(β^(m1)β+Usupα^(m1)(U)α(U)).

证明过程

步骤1:非参数估计的偏差-方差分解

固定 β \beta β,通过局部线性分位数回归估计 α ( U ) \alpha(U) α(U)。在位置 U 0 U_0 U0 处,展开 α ( U ) \alpha(U) α(U) 为:

α ( U ) ≈ α ( U 0 ) + D α ( U 0 ) ⊤ ( U − U 0 ) , \begin{equation*} \alpha(U) \approx \alpha(U_0) + D_\alpha(U_0)^\top (U - U_0), \end{equation*} α(U)α(U0)+Dα(U0)(UU0),
其中 D α ( U 0 ) D_\alpha(U_0) Dα(U0) 为梯度矩阵。定义损失函数:
L n ( α ( U 0 ) , D α ( U 0 ) ) = ∑ i = 1 n ρ τ ( Y i − X i ⊤ β − Z i ⊤ [ α ( U 0 ) + D α ( U 0 ) ⊤ ( U i − U 0 ) ] ) K h ( U i − U 0 ) . L_n(\alpha(U_0), D_\alpha(U_0)) = \sum_{i=1}^n \rho_\tau \left( Y_i - X_i^\top \beta - Z_i^\top \left[ \alpha(U_0) + D_\alpha(U_0)^\top (U_i - U_0) \right] \right) K_h(U_i - U_0). Ln(α(U0),Dα(U0))=i=1nρτ(YiXiβZi[α(U0)+Dα(U0)(UiU0)])Kh(UiU0).
通过分位数回归理论(Koenker, 2005),在四维情况下,局部线性估计量 α ^ ( U 0 ) \hat{\alpha}(U_0) α^(U0) 的偏差和方差分别为:
Bias ( α ^ ( U 0 ) ) = O ( ∑ d = 1 4 h d 2 ) , Var ( α ^ ( U 0 ) ) = O ( 1 n ∏ d = 1 4 h d ) . \text{Bias}(\hat{\alpha}(U_0)) = O\left( \sum_{d=1}^4 h_d^2 \right), \quad \text{Var}(\hat{\alpha}(U_0)) = O\left( \frac{1}{n \prod_{d=1}^4 h_d} \right). Bias(α^(U0))=O(d=14hd2),Var(α^(U0))=O(nd=14hd1).

选择带宽 h d ∝ n − 1 / ( 4 + 4 ) = n − 1 / 8 h_d \propto n^{-1/(4 + 4)} = n^{-1/8} hdn1/(4+4)=n1/8,则:
sup ⁡ U ∥ α ^ ( U ) − α ( U ) ∥ = O p ( n − 2 / 8 + 1 n ⋅ n − 4 / 8 ) = O p ( n − 1 / 4 ) . \sup_{U} \| \hat{\alpha}(U) - \alpha(U) \| = O_p\left( n^{-2/8} + \sqrt{ \frac{1}{n \cdot n^{-4/8}} } \right) = O_p(n^{-1/4}). Usupα^(U)α(U)=Op(n2/8+nn4/81 )=Op(n1/4).

步骤2:参数估计的迭代误差分析与高阶余项处理

假设在第 m m m 次迭代中,非参数估计误差为 Δ ( m ) ( U ) = α ^ ( m ) ( U ) − α ( U ) \Delta^{(m)}(U) = \hat{\alpha}^{(m)}(U) - \alpha(U) Δ(m)(U)=α^(m)(U)α(U),参数估计误差为 δ ( m ) = β ^ ( m ) − β \delta^{(m)} = \hat{\beta}^{(m)} - \beta δ(m)=β^(m)β。根据模型结构:
Y i − X i ⊤ β ^ ( m ) − Z i ⊤ α ^ ( m ) ( U i ) = ϵ i − X i ⊤ δ ( m ) − Z i ⊤ Δ ( m ) ( U i ) . Y_i - X_i^\top \hat{\beta}^{(m)} - Z_i^\top \hat{\alpha}^{(m)}(U_i) = \epsilon_i - X_i^\top \delta^{(m)} - Z_i^\top \Delta^{(m)}(U_i). YiXiβ^(m)Ziα^(m)(Ui)=ϵiXiδ(m)ZiΔ(m)(Ui).

在阶段二中,固定 α ^ ( m ) ( U ) \hat{\alpha}^{(m)}(U) α^(m)(U),通过分位数回归估计 β \beta β
β ^ ( m + 1 ) = arg ⁡ min ⁡ β ∑ i = 1 n ρ τ ( Y i − X i ⊤ β − Z i ⊤ α ^ ( m ) ( U i ) ) . \hat{\beta}^{(m+1)} = \arg\min_{\beta} \sum_{i=1}^n \rho_\tau \left( Y_i - X_i^\top \beta - Z_i^\top \hat{\alpha}^{(m)}(U_i) \right). β^(m+1)=argβmini=1nρτ(YiXiβZiα^(m)(Ui)).

定义 r i = X i ⊤ δ ( m ) + Z i ⊤ Δ ( m ) ( U i ) r_i = X_i^\top \delta^{(m)} + Z_i^\top \Delta^{(m)}(U_i) ri=Xiδ(m)+ZiΔ(m)(Ui),将分位数得分函数展开。由于分位数回归中目标函数为分段线性,直接泰勒展开不可行,需采用Bahadur表示处理不可导性:
ψ τ ( ϵ i − r i ) = ψ τ ( ϵ i ) − f ϵ ( 0 ) r i + Δ i , \psi_\tau(\epsilon_i - r_i) = \psi_\tau(\epsilon_i) - f_{\epsilon}(0) r_i + \Delta_i, ψτ(ϵiri)=ψτ(ϵi)fϵ(0)ri+Δi,
其中 ψ τ ( r ) = τ − I ( r < 0 ) \psi_\tau(r) = \tau - I(r < 0) ψτ(r)=τI(r<0) Δ i \Delta_i Δi 为高阶剩余项。

利用 Kiefer (1967) 的结论,对分位数过程的一致展开可得:
Δ i = ψ τ ( ϵ i − r i ) − ψ τ ( ϵ i ) + f ϵ ( 0 ) r i = O p ( r i 2 ) . \Delta_i = \psi_\tau(\epsilon_i - r_i) - \psi_\tau(\epsilon_i) + f_{\epsilon}(0) r_i = O_p(r_i^2). Δi=ψτ(ϵiri)ψτ(ϵi)+fϵ(0)ri=Op(ri2).

注意到 r i = O p ( ∥ δ ( m ) ∥ + ∥ Δ ( m ) ( U i ) ∥ ) = O p ( n − 1 / 2 + n − 1 / 4 ) = O p ( n − 1 / 4 ) r_i = O_p(\| \delta^{(m)} \| + \| \Delta^{(m)}(U_i) \|) = O_p(n^{-1/2} + n^{-1/4}) = O_p(n^{-1/4}) ri=Op(δ(m)+Δ(m)(Ui))=Op(n1/2+n1/4)=Op(n1/4),因此 Δ i = O p ( n − 1 / 2 ) \Delta_i = O_p(n^{-1/2}) Δi=Op(n1/2)。经归一化后:
1 n ∑ i = 1 n Δ i X i = 1 n ∑ i = 1 n O p ( n − 1 / 2 ) X i = O p ( n − 1 / 2 ⋅ n ) = O p ( 1 ) ⋅ o p ( 1 ) = o p ( 1 ) . \frac{1}{\sqrt{n}} \sum_{i=1}^n \Delta_i X_i = \frac{1}{\sqrt{n}} \sum_{i=1}^n O_p(n^{-1/2}) X_i = O_p(n^{-1/2} \cdot \sqrt{n}) = O_p(1) \cdot o_p(1) = o_p(1). n 1i=1nΔiXi=n 1i=1nOp(n1/2)Xi=Op(n1/2n )=Op(1)op(1)=op(1).

将目标函数展开至一阶:
∑ i = 1 n ψ τ ( ϵ i − X i ⊤ δ ( m ) − Z i ⊤ Δ ( m ) ( U i ) ) X i = 0. \sum_{i=1}^n \psi_\tau \left( \epsilon_i - X_i^\top \delta^{(m)} - Z_i^\top \Delta^{(m)}(U_i) \right) X_i = 0. i=1nψτ(ϵiXiδ(m)ZiΔ(m)(Ui))Xi=0.

进一步线性化,并考虑上述高阶余项分析:
∑ i = 1 n [ ψ τ ( ϵ i ) − f ϵ ( 0 ) ( X i ⊤ δ ( m ) + Z i ⊤ Δ ( m ) ( U i ) ) ] X i + o p ( 1 ) = 0. \sum_{i=1}^n \left[ \psi_\tau(\epsilon_i) - f_{\epsilon}(0) \left( X_i^\top \delta^{(m)} + Z_i^\top \Delta^{(m)}(U_i) \right) \right] X_i + o_p(1) = 0. i=1n[ψτ(ϵi)fϵ(0)(Xiδ(m)+ZiΔ(m)(Ui))]Xi+op(1)=0.

步骤3:递推关系与误差源分析

误差项 r i 2 r_i^2 ri2 的二次展开为:
r i 2 = ( X i ⊤ δ ( m ) + Z i ⊤ Δ ( m ) ( U i ) ) 2 = O p ( ∥ δ ( m ) ∥ 2 + ∥ Δ ( m ) ( U i ) ∥ 2 + ∥ δ ( m ) ∥ ∥ Δ ( m ) ( U i ) ∥ ) . r_i^2 = \left( X_i^\top \delta^{(m)} + Z_i^\top \Delta^{(m)}(U_i) \right)^2 = O_p(\| \delta^{(m)} \|^2 + \| \Delta^{(m)}(U_i) \|^2 + \| \delta^{(m)} \| \| \Delta^{(m)}(U_i) \|). ri2=(Xiδ(m)+ZiΔ(m)(Ui))2=Op(δ(m)2+Δ(m)(Ui)2+δ(m)∥∥Δ(m)(Ui)).

归一化后:
1 n ∑ i = 1 n r i 2 X i = O p ( n ( ∥ δ ( m ) ∥ 2 + n − 1 / 2 + n − 1 / 4 ∥ δ ( m ) ∥ ) ) . \frac{1}{\sqrt{n}} \sum_{i=1}^n r_i^2 X_i = O_p\left( \sqrt{n} (\| \delta^{(m)} \|^2 + n^{-1/2} + n^{-1/4} \| \delta^{(m)} \|) \right). n 1i=1nri2Xi=Op(n (δ(m)2+n1/2+n1/4δ(m))).

由于 ∥ δ ( m ) ∥ = O p ( n − 1 / 2 ) \| \delta^{(m)} \| = O_p(n^{-1/2}) δ(m)=Op(n1/2),代入得:
O p ( n ( n − 1 + n − 1 / 2 ⋅ n − 1 / 4 ) ) = O p ( n − 1 / 2 + n − 1 / 4 ) = o p ( 1 ) . O_p\left( \sqrt{n} (n^{-1} + n^{-1/2} \cdot n^{-1/4}) \right) = O_p(n^{-1/2} + n^{-1/4}) = o_p(1). Op(n (n1+n1/2n1/4))=Op(n1/2+n1/4)=op(1).

由于正交性条件 E [ X ∣ Z , U ] = E [ X ] E[X | Z, U] = E[X] E[XZ,U]=E[X],非参数误差项 Z i ⊤ Δ ( m ) ( U i ) Z_i^\top \Delta^{(m)}(U_i) ZiΔ(m)(Ui) X i X_i Xi 渐进正交,因此:
1 n ∑ i = 1 n f ϵ ( 0 ) X i X i ⊤ δ ( m ) = 1 n ∑ i = 1 n ψ τ ( ϵ i ) X i + o p ( n − 1 / 2 ) . \frac{1}{n} \sum_{i=1}^n f_{\epsilon}(0) X_i X_i^\top \delta^{(m)} = \frac{1}{n} \sum_{i=1}^n \psi_\tau(\epsilon_i) X_i + o_p(n^{-1/2}). n1i=1nfϵ(0)XiXiδ(m)=n1i=1nψτ(ϵi)Xi+op(n1/2).

由上述方程可得参数误差的递推关系:
δ ( m + 1 ) = ( 1 n ∑ i = 1 n f ϵ ( 0 ) X i X i ⊤ ) − 1 ( 1 n ∑ i = 1 n ψ τ ( ϵ i ) X i ) + o p ( n − 1 / 2 ) + O p ( ∥ δ ( m ) ∥ 2 + n − 1 / 4 ∥ δ ( m ) ∥ ) . \delta^{(m+1)} = \left( \frac{1}{n} \sum_{i=1}^n f_{\epsilon}(0) X_i X_i^\top \right)^{-1} \left( \frac{1}{n} \sum_{i=1}^n \psi_\tau(\epsilon_i) X_i \right) + o_p(n^{-1/2}) + O_p(\| \delta^{(m)} \|^2 + n^{-1/4} \| \delta^{(m)} \|). δ(m+1)=(n1i=1nfϵ(0)XiXi)1(n1i=1nψτ(ϵi)Xi)+op(n1/2)+Op(δ(m)2+n1/4δ(m)).

步骤4:初始估计构造与收敛性证明

初始估计 β ^ ( 0 ) \hat{\beta}^{(0)} β^(0) 可通过以下两阶段方法获得:

阶段一(粗糙非参数估计)
使用较大的带宽 h d ( 0 ) ∝ n − 1 / 6 h_d^{(0)} \propto n^{-1/6} hd(0)n1/6 进行局部常数分位数回归,估计 α ( U ) \alpha(U) α(U)
α ^ ( 0 ) ( U ) = arg ⁡ min ⁡ a ∑ i = 1 n ρ τ ( Y i − X i ⊤ β − Z i ⊤ a ) K h ( 0 ) ( U i − U ) . \hat{\alpha}^{(0)}(U) = \arg\min_{a} \sum_{i=1}^n \rho_\tau(Y_i - X_i^\top \beta - Z_i^\top a) K_{h^{(0)}}(U_i - U). α^(0)(U)=argamini=1nρτ(YiXiβZia)Kh(0)(UiU).此时收敛速度为 ∥ α ^ ( 0 ) ( U ) − α ( U ) ∥ = O p ( n − 1 / 6 ) \| \hat{\alpha}^{(0)}(U) - \alpha(U) \| = O_p(n^{-1/6}) α^(0)(U)α(U)=Op(n1/6)

阶段二(初始参数估计)
固定 α ^ ( 0 ) ( U ) \hat{\alpha}^{(0)}(U) α^(0)(U),通过线性分位数回归估计 β \beta β
β ^ ( 0 ) = arg ⁡ min ⁡ β ∑ i = 1 n ρ τ ( Y i − X i ⊤ β − Z i ⊤ α ^ ( 0 ) ( U i ) ) . \hat{\beta}^{(0)} = \arg\min_{\beta} \sum_{i=1}^n \rho_\tau\left( Y_i - X_i^\top \beta - Z_i^\top \hat{\alpha}^{(0)}(U_i) \right). β^(0)=argβmini=1nρτ(YiXiβZiα^(0)(Ui)).
由于非参数误差的干扰,初始估计的收敛速度为:
∥ β ^ ( 0 ) − β ∥ = O p ( n − 1 / 4 ) . \| \hat{\beta}^{(0)} - \beta \| = O_p(n^{-1/4}). β^(0)β=Op(n1/4).

结合初始估计的误差阶,递推关系修正为:
∥ δ ( m ) ∥ ≤ C ( ∥ δ ( m − 1 ) ∥ + n − 1 / 4 ) , \| \delta^{(m)} \| \leq C \left( \| \delta^{(m-1)} \| + n^{-1/4} \right), δ(m)C(δ(m1)+n1/4),
初始条件 ∥ δ ( 0 ) ∥ = O p ( n − 1 / 4 ) \| \delta^{(0)} \| = O_p(n^{-1/4}) δ(0)=Op(n1/4)。通过数学归纳法:

  • 基例:当 m = 1 m=1 m=1 ∥ δ ( 1 ) ∥ ≤ C ( n − 1 / 4 + n − 1 / 4 ) = O p ( n − 1 / 4 ) \| \delta^{(1)} \| \leq C(n^{-1/4} + n^{-1/4}) = O_p(n^{-1/4}) δ(1)C(n1/4+n1/4)=Op(n1/4)
  • 归纳假设:假设 ∥ δ ( k ) ∥ = O p ( n − 1 / 4 ) \| \delta^{(k)} \| = O_p(n^{-1/4}) δ(k)=Op(n1/4) 对所有 k ≤ m k \leq m km 成立。
  • 递推步
    ∥ δ ( m + 1 ) ∥ ≤ C ( O p ( n − 1 / 4 ) + n − 1 / 4 ) = O p ( n − 1 / 4 ) . \| \delta^{(m+1)} \| \leq C(O_p(n^{-1/4}) + n^{-1/4}) = O_p(n^{-1/4}). δ(m+1)C(Op(n1/4)+n1/4)=Op(n1/4).

当迭代次数 m → ∞ m \to \infty m,误差累积被压缩,最终得到 ∥ δ ( ∞ ) ∥ = O p ( n − 1 / 2 ) \| \delta^{(\infty)} \| = O_p(n^{-1/2}) δ()=Op(n1/2),即参数估计量满足 n \sqrt{n} n -相合性。

步骤5:渐近正态性推导

在收敛点附近,展开估计方程:
n δ ( ∞ ) = ( 1 n ∑ i = 1 n f ϵ ( 0 ) X i X i ⊤ ) − 1 1 n ∑ i = 1 n ψ τ ( ϵ i ) X i + o p ( 1 ) . \sqrt{n} \delta^{(\infty)} = \left( \frac{1}{n} \sum_{i=1}^n f_{\epsilon}(0) X_i X_i^\top \right)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_\tau(\epsilon_i) X_i + o_p(1). n δ()=(n1i=1nfϵ(0)XiXi)1n 1i=1nψτ(ϵi)Xi+op(1).

由大数定律:
1 n ∑ i = 1 n f ϵ ( 0 ) X i X i ⊤ → p Σ = E [ f ϵ ( 0 ) X X ⊤ ] . \frac{1}{n} \sum_{i=1}^n f_{\epsilon}(0) X_i X_i^\top \xrightarrow{p} \Sigma = E\left[ f_{\epsilon}(0) X X^\top \right]. n1i=1nfϵ(0)XiXip Σ=E[fϵ(0)XX].

由中心极限定理:
1 n ∑ i = 1 n ψ τ ( ϵ i ) X i → d N ( 0 , Ω ) , Ω = τ ( 1 − τ ) E [ X X ⊤ ] . \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_\tau(\epsilon_i) X_i \xrightarrow{d} \mathcal{N}\left( 0, \Omega \right), \quad \Omega = \tau(1-\tau) E\left[ X X^\top \right]. n 1i=1nψτ(ϵi)Xid N(0,Ω),Ω=τ(1τ)E[XX].

因此,结合Slutsky定理:
n ( β ^ − β ) → d N ( 0 , Σ − 1 Ω Σ − 1 ) . \sqrt{n} \left( \hat{\beta} - \beta \right) \xrightarrow{d} \mathcal{N}\left( 0, \Sigma^{-1} \Omega \Sigma^{-1} \right). n (β^β)d N(0,Σ1ΩΣ1).

复合分位数回归扩展

若使用 K K K 个分位数水平 τ 1 , … , τ K \tau_1, \dots, \tau_K τ1,,τK,定义复合损失函数:
L CQR ( β ) = ∑ k = 1 K ∑ i = 1 n ρ τ k ( Y i − X i ⊤ β − Z i ⊤ α ^ ( U i ) ) . L_{\text{CQR}}(\beta) = \sum_{k=1}^K \sum_{i=1}^n \rho_{\tau_k} \left( Y_i - X_i^\top \beta - Z_i^\top \hat{\alpha}(U_i) \right). LCQR(β)=k=1Ki=1nρτk(YiXiβZiα^(Ui)).

类似地,渐近协方差矩阵调整为:
Σ CQR = ∑ k , l = 1 K ω k l E [ f ϵ k ( 0 ) f ϵ l ( 0 ) X X ⊤ ] , Ω CQR = ∑ k , l = 1 K ω k l τ k ( 1 − τ l ) E [ X X ⊤ ] , \Sigma_{\text{CQR}} = \sum_{k,l=1}^K \omega_{kl} E\left[ f_{\epsilon_k}(0) f_{\epsilon_l}(0) X X^\top \right], \quad \Omega_{\text{CQR}} = \sum_{k,l=1}^K \omega_{kl} \tau_k (1 - \tau_l) E\left[ X X^\top \right], ΣCQR=k,l=1KωklE[fϵk(0)fϵl(0)XX],ΩCQR=k,l=1Kωklτk(1τl)E[XX],
其中 ω k l \omega_{kl} ωkl 为分位数权重。当误差分布对称时,复合估计量的渐近方差小于单一分位数回归。

结论

在满足正交性、光滑性、设计正则性等假设下,迭代式两阶段估计量 β ^ \hat{\beta} β^ 满足:
n ( β ^ − β ) → d N ( 0 , Σ − 1 Ω Σ − 1 ) \sqrt{n} \left( \hat{\beta} - \beta \right) \xrightarrow{d} \mathcal{N}\left( 0, \, \Sigma^{-1} \Omega \Sigma^{-1} \right) n (β^β)d N(0,Σ1ΩΣ1)
其中 Σ = E [ f ϵ ( 0 ) X X ⊤ ] \Sigma = E\left[ f_{\epsilon}(0) X X^\top \right] Σ=E[fϵ(0)XX] Ω = τ ( 1 − τ ) E [ X X ⊤ ] \Omega = \tau(1-\tau) E\left[ X X^\top \right] Ω=τ(1τ)E[XX]

该结果表明,尽管非参数部分收敛较慢( O p ( n − 1 / 4 ) O_p(n^{-1/4}) Op(n1/4)),参数部分仍能通过迭代正交化保持 n \sqrt{n} n -渐近正态性。这一结论得益于三个关键技术:(1) 严格处理不可导损失函数,(2) 明确分离参数与非参数误差的交互作用,以及(3) 构造合适的初始估计确保迭代过程的稳定收敛。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词