欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 焦点 > Linux——信号量和(环形队列消费者模型)

Linux——信号量和(环形队列消费者模型)

2025/1/22 16:50:17 来源:https://blog.csdn.net/2301_80687320/article/details/145290153  浏览:    关键词:Linux——信号量和(环形队列消费者模型)

Linux——线程条件变量(同步)-CSDN博客


文章目录


目录

文章目录

前言

一、信号量是什么?

二、信号量

1、主要类型

2、操作

3、应用场景

三、信号量函数

1、sem_init 函数

2、sem_wait 函数

3、sem_post 函数

4、sem_destroy 函数

​​​​​​​5、sem_getvalue 函数

6、sem_trywait 函数

7、sem_timedwait 函数

四、环形队列

1、定义与原理

2、操作

五、线程池

基本原理

主要功能

实现方式

六、基于环形队列的消费者模型

1、main函数

2、RingQueue.hpp 

3、Task.hpp 

​编辑


前言

信号量(Semaphore)是一种用于多线程或多进程环境下实现同步和互斥的机制。


一、信号量是什么?

信号量本质上是一个计数器,用于控制对共享资源的访问。它的值表示当前可用的资源数量。当一个线程或进程想要访问某个共享资源时,它需要先检查信号量的值。如果信号量的值大于 0,则表示有可用资源,该线程或进程可以获取资源并将信号量的值减 1;如果信号量的值为 0,则表示没有可用资源,该线程或进程需要等待,直到其他线程或进程释放资源,使信号量的值大于 0。

二、信号量

1、主要类型

  • 二进制信号量:也称为互斥信号量,它的值只能是 0 或 1。主要用于实现互斥访问,确保在任何时刻只有一个线程或进程能够访问共享资源,就像一个房间只有一把钥匙,谁拿到钥匙谁才能进入房间使用里面的资源,使用完后把钥匙放回,其他人才有机会拿到钥匙进入。
  • 计数信号量:其值可以是任意非负整数,用于控制同时访问共享资源的线程或进程数量。比如有一个停车场有 10 个停车位,就可以用一个初始值为 10 的计数信号量来表示,每有一辆车进入停车场,信号量的值就减 1,当信号量的值为 0 时,表示停车场已满,后续车辆需要等待。

2、操作

  • P 操作:也称为 wait 操作或 down 操作。当一个进程或线程执行 P 操作时,它会检查信号量的值。如果信号量的值大于 0,则将信号量的值减 1,然后进程或线程可以继续执行;如果信号量的值为 0,则进程或线程会被阻塞,放入等待队列,直到信号量的值大于 0。
  • V 操作:也称为 signal 操作或 up 操作。当一个进程或线程执行 V 操作时,它会将信号量的值加 1。如果此时有其他进程或线程正在等待该信号量(即信号量的值为 0 且有进程在等待队列中),则系统会从等待队列中唤醒一个进程或线程,使其能够执行 P 操作并获取资源。

3、应用场景

  • 资源管理:可以用于管理系统中的各种资源,如内存、文件、网络连接等。通过信号量可以确保资源的合理分配和使用,避免资源冲突和过度使用。
  • 进程同步:在多个进程或线程协同工作的场景中,信号量可以用于实现进程之间的同步。例如,一个进程需要等待另一个进程完成某个任务后才能继续执行,就可以使用信号量来实现这种等待和唤醒机制。
  • 生产者 - 消费者问题:是信号量应用的经典场景。生产者进程生产数据并将其放入缓冲区,消费者进程从缓冲区中取出数据进行消费。通过信号量可以控制生产者和消费者的行为,确保缓冲区不会被过度写入或读取。

三、信号量函数

1、sem_init 函数

  • 功能:用于初始化一个信号量。
  • 原型:int sem_init(sem_t *sem, int pshared, unsigned int value);
  • 参数:sem是指向要初始化的信号量的指针;pshared指定信号量是否在进程间共享,0 表示仅在线程间共享,非 0 表示在进程间共享;value是信号量的初始值。
  • 返回值:成功时返回 0,失败时返回 - 1,并设置errno以指示错误原因。

2、sem_wait 函数

  • 功能:对信号量执行 P 操作,即等待信号量变为可用。
  • 原型:int sem_wait(sem_t *sem);
  • 参数:sem是指向要操作的信号量的指针。
  • 返回值:成功时返回 0,若信号量的值为 0,则线程会阻塞直到信号量可用;失败时返回 - 1,并设置errno

3、sem_post 函数

  • 功能:对信号量执行 V 操作,释放信号量,使信号量的值加 1。
  • 原型:int sem_post(sem_t *sem);
  • 参数:sem是指向要操作的信号量的指针。
  • 返回值:成功时返回 0,失败时返回 - 1,并设置errno

4、sem_destroy 函数

  • 功能:销毁一个信号量,释放相关资源。
  • 原型:int sem_destroy(sem_t *sem);
  • 参数:sem是指向要销毁的信号量的指针。
  • 返回值:成功时返回 0,失败时返回 - 1,并设置errno

​​​​​​​5、sem_getvalue 函数

  • 功能:获取信号量的当前值。
  • 原型:int sem_getvalue(sem_t *sem, int *sval);
  • 参数:sem是指向要查询的信号量的指针;sval是一个整数指针,用于存储信号量的当前值。​​​​​​​
  • 返回值:成功时返回 0,并将信号量的当前值存储在sval指向的位置;失败时返回 - 1,并设置errno以指示错误原因。

6、sem_trywait 函数

  • 功能:尝试对信号量执行 P 操作,但不会阻塞线程。如果信号量的值大于 0,则将信号量的值减 1 并立即返回;如果信号量的值为 0,则立即返回错误,而不会阻塞线程。
  • 原型:int sem_trywait(sem_t *sem);
  • 参数:sem是指向要操作的信号量的指针。
  • 返回值:成功时返回 0,此时表示成功获取信号量并将其值减 1;如果信号量的值为 0,无法获取信号量,则返回 - 1,并将errno设置为EAGAIN

7、sem_timedwait 函数

  • 功能:对信号量执行 P 操作,但会设置一个超时时间。如果在超时时间内信号量变为可用,则获取信号量并返回;如果超时时间已过,信号量仍不可用,则返回错误。
  • 原型:int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
  • 参数:sem是指向要操作的信号量的指针;abs_timeout是一个指向struct timespec结构体的指针,用于指定绝对超时时间。
  • 返回值:成功时返回 0,若在超时时间内未获取到信号量,则返回 - 1,并将errno设置为ETIMEDOUT

四、环形队列

1、定义与原理

  • 环形队列是一种基于队列的数据结构,它将队列的首尾相连,形成一个环形的存储空间。与普通队列不同,环形队列可以更有效地利用存储空间,避免了普通队列在元素出队后出现的前端空闲空间无法利用的问题。
  • 它通过使用两个指针,即队头指针(front)和队尾指针(rear)来管理队列中的元素。当队尾指针到达队列的末尾时,它会重新回到队列的开头,继续存储新元素,从而实现了循环利用空间的功能。

2、操作

  • 初始化:创建一个指定大小的数组来存储队列元素,并将队头指针和队尾指针都初始化为 0,表示队列为空。
  • 入队操作:当要将一个新元素插入到环形队列中时,首先检查队列是否已满。如果未满,将新元素存储在队尾指针所指向的位置,然后将队尾指针向后移动一位。如果队尾指针已经到达数组的末尾,则将其重新设置为数组的开头位置。
  • 出队操作:从环形队列中删除元素时,首先检查队列是否为空。如果不为空,取出队头指针所指向的元素,然后将队头指针向后移动一位。同样,如果队头指针到达数组的末尾,也需要将其重新设置为数组的开头位置。
  • 判断队列空满
    • 一般采用牺牲一个存储空间的方法来区分队列空和满的情况,即当(rear + 1) % maxSize == front时,认为队列已满,其中maxSize是队列的最大容量;当front == rear时,认为队列是空的。
    • 也可以使用一个计数器来记录队列中元素的个数,当计数器的值为 0 时表示队列为空,当计数器的值等于maxSize时表示队列已满。

五、线程池

线程池是一种多线程处理形式,它将多个线程预先创建并放入一个池中,以方便对线程进行管理和重复利用,从而提高系统性能和资源利用率。以下是关于线程池的详细介绍:

基本原理

  • 线程创建与管理:线程池在初始化时会创建一定数量的线程,并将它们放入线程池中。这些线程在创建后不会立即执行具体任务,而是处于等待状态,等待接收任务并执行。
  • 任务队列:线程池通常会维护一个任务队列,用于存储待执行的任务。当有新任务到来时,会将任务添加到任务队列中。线程池中的线程会不断从任务队列中获取任务,并执行相应的操作。
  • 线程复用:线程执行完一个任务后,不会立即销毁,而是返回到线程池中,继续等待下一个任务。这样可以避免频繁地创建和销毁线程,减少了线程创建和销毁所带来的开销,提高了系统的性能和响应速度。

主要功能

  • 提高资源利用率:通过复用线程,避免了因频繁创建和销毁线程而带来的资源浪费,尤其是在处理大量短时间任务时,能显著提高系统资源的利用率。
  • 控制并发度:可以限制同时执行的线程数量,避免过多线程同时运行导致系统资源过度消耗,从而保证系统的稳定性和响应能力。
  • 简化线程管理:将线程的创建、调度和管理等工作封装在一个线程池中,使得开发者无需直接管理大量的线程,降低了多线程编程的复杂性,提高了代码的可维护性和可读性。

实现方式

  • 线程池的组成部分
    • 线程集合:存储线程池中的所有线程,一般使用线程数组或线程列表来实现。
    • 任务队列:用于存放待执行的任务,通常使用队列数据结构,如阻塞队列来实现。当任务队列满时,新任务可能会被阻塞或根据特定的策略进行处理。
    • 线程池管理模块:负责线程池的初始化、线程的创建与销毁、任务的分配与调度等管理工作。它根据任务队列的状态和线程池的配置参数,决定是否需要创建新的线程或回收空闲线程。
  • 工作流程
    • 任务提交:用户将任务提交到线程池,任务会被放入任务队列中。
    • 任务分配:线程池中的线程会不断从任务队列中获取任务。当线程获取到任务后,就开始执行任务。
    • 线程管理:线程池管理模块会监控线程的状态,当线程执行完任务后,会将其重新放回线程池中,使其可以继续执行下一个任务。如果线程池中的线程数量超过了最大线程数,或者有空闲线程超过了一定的空闲时间,线程池管理模块会负责销毁这些线程,以释放资源。

六、基于环形队列的消费者模型

1、main函数

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <ctime>
#include "RingQueue.hpp"
#include "Task.hpp"using namespace std;struct ThreadData
{RingQueue<Task> *rq;std::string threadname;
};void *Productor(void *args)
{// sleep(3);ThreadData *td = static_cast<ThreadData*>(args);RingQueue<Task> *rq = td->rq;std::string name = td->threadname;int len = opers.size();while (true){// 1. 获取数据int data1 = rand() % 10 + 1;usleep(10);int data2 = rand() % 10;char op = opers[rand() % len];Task t(data1, data2, op);// 2. 生产数据rq->Push(t);cout << "Productor task done, task is : " << t.GetTask() << " who: " << name << endl;sleep(1);}return nullptr;
}void *Consumer(void *args)
{ThreadData *td = static_cast<ThreadData*>(args);RingQueue<Task> *rq = td->rq;std::string name = td->threadname;while (true){// 1. 消费数据Task t;rq->Pop(&t);// 2. 处理数据t();cout << "Consumer get task, task is : " << t.GetTask() << " who: " << name << " result: " << t.GetResult() << endl;// sleep(1);}return nullptr;
}int main()
{srand(time(nullptr) ^ getpid());RingQueue<Task> *rq = new RingQueue<Task>(50);pthread_t c[5], p[3];for (int i = 0; i < 1; i++){ThreadData *td = new ThreadData();td->rq = rq;td->threadname = "Productor-" + std::to_string(i);pthread_create(p + i, nullptr, Productor, td);}for (int i = 0; i < 1; i++){ThreadData *td = new ThreadData();td->rq = rq;td->threadname = "Consumer-" + std::to_string(i);pthread_create(c + i, nullptr, Consumer, td);}for (int i = 0; i < 1; i++){pthread_join(p[i], nullptr);}for (int i = 0; i < 1; i++){pthread_join(c[i], nullptr);}return 0;
}

2、RingQueue.hpp 

#pragma once
#include <iostream>
#include <vector>
#include <semaphore.h>
#include <pthread.h>const static int defaultcap = 5;template<class T>
class RingQueue{
private:void P(sem_t &sem){sem_wait(&sem);}void V(sem_t &sem){sem_post(&sem);}void Lock(pthread_mutex_t &mutex){pthread_mutex_lock(&mutex);}void Unlock(pthread_mutex_t &mutex){pthread_mutex_unlock(&mutex);}
public:RingQueue(int cap = defaultcap):ringqueue_(cap), cap_(cap), c_step_(0), p_step_(0){sem_init(&cdata_sem_, 0, 0);sem_init(&pspace_sem_, 0, cap);pthread_mutex_init(&c_mutex_, nullptr);pthread_mutex_init(&p_mutex_, nullptr);}void Push(const T &in) // 生产{P(pspace_sem_);Lock(p_mutex_); // ?ringqueue_[p_step_] = in;// 位置后移,维持环形特性p_step_++;p_step_ %= cap_;Unlock(p_mutex_); V(cdata_sem_);}void Pop(T *out)       // 消费{P(cdata_sem_);Lock(c_mutex_); // ?*out = ringqueue_[c_step_];// 位置后移,维持环形特性c_step_++;c_step_ %= cap_;Unlock(c_mutex_); V(pspace_sem_);}~RingQueue(){sem_destroy(&cdata_sem_);sem_destroy(&pspace_sem_);pthread_mutex_destroy(&c_mutex_);pthread_mutex_destroy(&p_mutex_);}
private:std::vector<T> ringqueue_;int cap_;int c_step_;       // 消费者下标int p_step_;       // 生产者下标sem_t cdata_sem_;  // 消费者关注的数据资源sem_t pspace_sem_; // 生产者关注的空间资源pthread_mutex_t c_mutex_;pthread_mutex_t p_mutex_;
};

3、Task.hpp 

#pragma once
#include <iostream>
#include <string>std::string opers="+-*/%";enum{DivZero=1,ModZero,Unknown
};class Task
{
public:Task(){}Task(int x, int y, char op) : data1_(x), data2_(y), oper_(op), result_(0), exitcode_(0){}void run(){switch (oper_){case '+':result_ = data1_ + data2_;break;case '-':result_ = data1_ - data2_;break;case '*':result_ = data1_ * data2_;break;case '/':{if(data2_ == 0) exitcode_ = DivZero;else result_ = data1_ / data2_;}break;case '%':{if(data2_ == 0) exitcode_ = ModZero;else result_ = data1_ % data2_;}            break;default:exitcode_ = Unknown;break;}}void operator ()(){run();}std::string GetResult(){std::string r = std::to_string(data1_);r += oper_;r += std::to_string(data2_);r += "=";r += std::to_string(result_);r += "[code: ";r += std::to_string(exitcode_);r += "]";return r;}std::string GetTask(){std::string r = std::to_string(data1_);r += oper_;r += std::to_string(data2_);r += "=?";return r;}~Task(){}private:int data1_;int data2_;char oper_;int result_;int exitcode_;
};

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com