欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 科技 > IT业 > 对数几率回归

对数几率回归

2025/4/19 9:48:52 来源:https://blog.csdn.net/Hh2767474144/article/details/143892791  浏览:    关键词:对数几率回归

对数几率回归简介

对数几率回归(Logistic Regression)是一种用于解决分类问题的经典统计模型,其核心思想是利用逻辑函数(Sigmoid函数)将线性回归模型的输出值映射到概率范围 [0, 1],从而实现分类预测。对数几率回归特别适合用于二分类问题。

模型表达式

对数几率回归的概率预测公式为:

eq?P%28y%3D1%7Cx%29%20%3D%20%5Csigma%28z%29%20%3D%20%5Cfrac%7B1%7D%7B1%20+%20e%5E%7B-z%7D%7D

其中:

  • eq?z%20%3D%20w%5ET%20x%20+%20b
  • w为权重向量,x 为输入特征向量,b为偏置项
  • eq?sigma%28z%29 是 Sigmoid 函数

目标是通过训练确定参数 w 和 b,以最大化模型对数据的预测能力。


极大似然函数与交叉熵损失

极大似然函数

在训练过程中,假设数据集包含 n 个样本eq?%5C%7B%28x_i%2C%20y_i%29%5C%7D_%7Bi%3D1%7D%5En​,目标是最大化样本标签 y 的条件概率的乘积,即似然函数:

eq?L%28w%2C%20b%29%20%3D%20%5Cprod_%7Bi%3D1%7D%5En%20P%28y_i%7Cx_i%29%20%3D%20%5Cprod_%7Bi%3D1%7D%5En%20%5Csigma%28z_i%29%5E%7By_i%7D%20%281%20-%20%5Csigma%28z_i%29%29%5E%7B1%20-%20y_i%7D

为简化计算,通常对似然函数取对数,得到对数似然函数:

eq?l%28w%2C%20b%29%20%3D%20%5Csum_%7Bi%3D1%7D%5En%20%5Cleft%5B%20y_i%20%5Clog%20%5Csigma%28z_i%29%20+%20%281%20-%20y_i%29%20%5Clog%20%281%20-%20%5Csigma%28z_i%29%29%20%5Cright%5D

交叉熵损失

对数似然函数的负值称为交叉熵损失,是对数几率回归优化的目标函数:

eq?%7BCross-Entropy%20Loss%7D%20%3D%20-%5Cell%28w%2C%20b%29%20%3D%20-%5Cfrac%7B1%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5En%20%5Cleft%5B%20y_i%20%5Clog%20%5Csigma%28z_i%29%20+%20%281%20-%20y_i%29%20%5Clog%20%281%20-%20%5Csigma%28z_i%29%29%20%5Cright%5D

通过最小化交叉熵损失函数,可以训练出最优的模型参数。

在信息论中涉及信息熵与交叉熵的概念。信息熵越大,表示随机变量的不确定性越大。相对熵=信息熵+交叉熵,相对熵用来度量两个随机变量之间的差异。


参数优化方法

梯度下降法

使用梯度下降法(Gradient Descent)通过迭代更新参数 w 和 b 来最小化损失函数。更新公式为:

eq?w%20%5Cleftarrow%20w%20-%20%5Ceta%20%5Ccdot%20%5Cfrac%7B%5Cpartial%20%5Cell%7D%7B%5Cpartial%20w%7D%2C%20%5Cquad%20b%20%5Cleftarrow%20b%20-%20%5Ceta%20%5Ccdot%20%5Cfrac%7B%5Cpartial%20%5Cell%7D%7B%5Cpartial%20b%7D

其中 η为学习率。

牛顿法

牛顿法是一种二阶优化方法,利用梯度和二阶导数(Hessian 矩阵)更新参数,相较于梯度下降法收敛更快。更新公式为:

eq?w%20%5Cleftarrow%20w%20-%20H%5E%7B-1%7D%20%5Cnabla%20%5Cell

其中:

  • ∇ℓ 是损失函数的梯度
  • H 是 Hessian 矩阵,定义为损失函数的二阶导数矩阵

优点: 牛顿法可以显著加快优化速度,特别是在凸优化问题中表现出色。
缺点: 计算 Hessian 矩阵和求逆的开销较大,不适合大规模数据。

 

 

 

 

 

 

 

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词