欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 科技 > 能源 > CVPR2025自动驾驶端到端前沿论文汇总

CVPR2025自动驾驶端到端前沿论文汇总

2025/3/19 13:20:03 来源:https://blog.csdn.net/zyq880625/article/details/146316125  浏览:    关键词:CVPR2025自动驾驶端到端前沿论文汇总

自动驾驶


文章目录

  • 自动驾驶
  • 前言
  • 自动驾驶的轨迹预测论文
  • 端到端自动驾驶论文


前言

汇总CVPR2025自动驾驶前沿论文

自动驾驶的轨迹预测论文

Leveraging SD Map to Augment HD Map-based Trajectory Prediction
ModeSeq: Taming Sparse Multimodal Motion Prediction with Sequential Mode Modeling
Adapting to Observation Length of Trajectory Prediction via Contrastive Learning
From Sparse Signal to Smooth Motion: Real-Time Motion Generation with Rolling Prediction Models
Physical Plausibility-aware Trajectory Prediction via Locomotion Embodiment
Towards Generalizable Trajectory Prediction using Dual-Level Representation Learning and Adaptive Prompting
Multiple Object Tracking as ID Prediction
Enduring, Efficient and Robust Trajectory Prediction Attack in Autonomous Driving via Optimization-Driven Multi-Frame Perturbation Framework
Tra-MoE: Learning Trajectory Prediction Model from Multiple Domains for Adaptive Policy Conditioning
Poly-Autoregressive Prediction for Modeling Interactions

端到端自动驾驶论文

Bridging Past and Future: End-to-End Autonomous Driving with Historical Prediction and Planning
DriveGPT4-V2: Harnessing Large Language Model Capabilities for Enhanced Closed-Loop Autonomous Driving
Distilling Multi-modal Large Language Models for Autonomous Driving
MPDrive: Improving Spatial Understanding with Marker-Based Prompt Learning for Autonomous Driving
DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving
CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-Scale Reinforcement Learning in Autonomous Driving
Don’t Shake the Wheel: Momentum-Aware Planning in End-to-End Autonomous Driving
GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving
SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词